Abstract:
A method for producing artificial leather includes providing a substrate with an upper surface and a lower surface, providing a coating of an elastomeric resin on the upper surface of the substrate, and providing a pressure difference between the upper and lower surfaces of the substrate so as to cause infiltration of the elastomeric resin into the substrate from the upper surface to the lower surface.
Abstract:
A method for making a silicon oxide/silicon nitride/silicon oxide structure includes forming a tunnel oxide layer and a silicon nitride layer over a substrate; annealing the silicon nitride layer; forming a silicon oxide layer over the annealed silicon nitride layer by high temperature low pressure chemical vapor deposition; depositing a first gate layer over the silicon oxide layer; patterning to form a silicon oxide/silicon nitride/silicon oxide (ONO) structure; forming bit lines in the substrate adjacent the ONO structure; and annealing to form a thermal oxide over the bit lines.
Abstract:
A method for making a macromolecular laminate is disclosed. Firstly, polyurethane resin with solid content higher than 50% is mixed with additives in order to form polyurethane resin compound that is liquid at the normal temperature. Then, the polyurethane resin compound is coated on releasing paper and dried. Then, the releasing paper is removed in order to make a substrate. Then, the substrate is put in a physical vapor deposition system in which metal is used as a target. Finally, the metal is sputtered to the substrate in order to form a metallic film, thus making a macromolecular laminate.
Abstract:
A microfiber substrate of improved carding ability and its manufacturing method, and more particularly a micro-fiber spun by conjugated melting of crystallization difference of high crystallization polymer and low crystallization polyester, drawn to form an unsplit microfiber staple having a layer of thin film in its surrounding, the microfiber staple which is still kept in unsplitting state during opening, carding and lapping treatment, will be split just at the layer of thin layer of its surrounding of the microfiber staple by spunlace to completely split from the microfiber, knitted to form water-jet punch web, then subject to hot water to shrink to densification. The microfiber nonwoven web excellent in the wiping effect, cleaning effect and microfiber artificial leather excellent in the hand feeling and fluff compaction without environment pollution is enabled to offer the artificial leather more cheaply and easily finished.
Abstract:
A method for making a macromolecular laminate is disclosed. Firstly, a high solid-content polyurethane resin is prepared. The high solid-content polyurethane resin has a solid content higher than 80% by weight and a viscosity from 20000 to 60000 cps/30° C. The high solid-content polyurethane resin is liquid at the room temperature. The high solid-content polyurethane resin is mixed with additives to form a first type of polyurethane resin compound with a solid content higher than 50% by weight and a viscosity from 20000 to 60000 cps/30° C. The first type of polyurethane resin compound is liquid at room temperature and has a pot life of at least three hours at room temperature. The first type of polyurethane resin compound is coated on a releasing paper to make a main layer. Then, the releasing paper is removed from the main layer to make a laminate.
Abstract:
Artificial leather includes a substrate and a coating of a first elastomeric resin provided on the substrate. The substrate contains a second elastomeric resin evenly spread in the substrate. The first elastomeric resin forming the coating is identical to the second elastomeric resin in the substrate. The substrate includes a first porous structure. The coating includes a second porous structure contiguous to the first porous structure of the substrate. Preferably, the substrate has a density larger than that of the coating.
Abstract:
A method for producing an environmental friendly artificial leather product includes coating a first solvent-free elastomer resin composition on a releasing paper to form a top layer, coating a polyurethane resin composition containing more than 50% by weight solid content on the top layer to form an intermediate layer, coating a second solvent-free elastomer resin composition on the intermediate layer to form an adhesive layer, and finally applying a substrate on the adhesive layer, and peeling the releasing paper.
Abstract:
A method for manufacturing an artificial leather comprises the following steps. First, ultramicrofiber-forming fibers having an islands-in-sea type cross-sectional configuration are formed by blend spinning or conjugate spinning. Secondly, a porous reinforcement sheet of low compactness is formed from polyester, polyurethane or polyolefin by spunbonding, meltblowing or calendering. Next, the ultramicrofibers are entangled with the reinforcement sheet by needle punching or spunlace to form the complex reinforced ultramicrofiber nonwoven fabric. The nonwoven is impregnated or coated with an elastomer resin composition, and then subjected to a coagulating process, a washing process, a drying process and a removing process to produce a semi-product leather. Finally, the semi-product leather is then processed to produce the artificial leather.
Abstract:
A method for monitoring oxide film deposition is disclosed. The method utilizes silicon wafers having silicon nitride films thereon instead of bare silicon wafers to monitor the growth of silicon oxide/dioxide films in a furnace. The method for monitoring oxide film deposition comprises the following steps. First of all, a wafer having silicon nitride film and a silicon wafer are provided. Next an oxide layer is formed on the wafer and the silicon wafer, and the thickness of the oxide layer is controlled substantially equally on the wafer and the silicon wafer. Then the thickness of the oxide layer on the wafer and the silicon wafer is measured.
Abstract:
A method of forming a silicon nitride layer is provided. A deposition furnace having an outer tube, a wafer boat, a gas injector and a uniform gas injection apparatus is provided. The wafer boat is positioned within the outer tube for carrying a plurality of wafers. The gas injector is positioned between the outer tube and the wafer boat. Similarly, the uniform gas injection apparatus is positioned between the outer tube and the wafer boat. Gas injected into the uniform gas injection apparatus is uniformly distributed throughout the entire deposition furnace. To form a silicon nitride layer on each wafer, a silicon-containing gas is passed into the deposition furnace via the gas injector and a nitrogen-mixed carrier gas is passed into the deposition furnace via the uniform gas injection apparatus.