Abstract:
Apparatus for olefin polymerization includes one or more shell and tube olefin polymerization reactors, each of which has an olefin polymerization reaction mixture inlet connection and a crude polyolefin product outlet connection. Each reactor is equipped with a recirculation system including a pump arranged to circulate a reaction mixture through the tube side of the reactor independently of the introduction of olefin polymerization reaction mixture into the reactor. The apparatus may also include an inlet reaction mixture distribution manifold and an outlet polymerization reaction mixture collection manifold interconnecting the reactors for operation in parallel. The apparatus also includes catalyst composition and catalyst modifier inlets for each reactor arranged such that a catalyst modifier to may be introduced into each reactor at a rate which is independent of the introduction of catalyst composition.
Abstract:
A process for making a relatively low molecular weight, mid-range vinylidene content PIB polymer product comprising a liquid phase polymerization process conducted in a loop reactor at a temperature of at least 60° F. using a BF3/methanol catalyst complex and a contact time of no more than 4 minutes. At least about 90% of the PIB molecules present in the product comprise alpha or beta position isomers. The vinylidene (alpha) isomer content of the product may range from 20% to 70% thereof, and the content of tetra-substituted internal double bonds is very low, advantageously no more than about 10%, preferably less than about 5% and ideally less than about 1-2%.
Abstract:
A reaction product comprising an adduct of a mid-range vinylidene content PIB polymer composition and maleic anhydride, a phenolic compound or a compound having a reactive site for subsequent amination. The PIB composition comprises a relatively low molecular weight, mid-range vinylidene content PIB polymer product wherein at least about 90% of the PIB molecules present in the product comprise alpha or beta position isomers. The vinylidene (alpha) isomer content of the product may range from 20% to 70% thereof and the content of tetra-substituted internal double bonds is very low, preferably less than about 5% and ideally less than about 1–2%. The mid-range vinylidene content PIB polymer products may be prepared employing a liquid phase polymerization process conducted in a loop reactor at a temperature of at least 60° F. using a BF3/methanol catalyst complex and a contact time of no more than 4 minutes.
Abstract:
A process for making a relatively low molecular weight, mid-range vinylidene content PIB polymer product comprising a liquid phase polymerization process conducted in a loop reactor at a temperature of at least 60° F. using a BF3/methanol catalyst complex and a contact time of no more than 4 minutes. At least about 90% of the PIB molecules present in the product comprise alpha or beta position isomers. The vinylidene (alpha) isomer content of the product may range from 20% to 70% thereof, and the content of tetra-substituted internal double bonds is very low, advantageously no more than about 10%, preferably less than about 5% and ideally less than about 1–2%.
Abstract:
A mid-range vinylidene content PIB polymer composition made by a liquid phase polymerization process conducted in a loop reactor at a temperature of at least 60° F. using a BF3/methanol catalyst complex and a contact time of no more than 4 minutes. At least about 90% of the PIB molecules present in the product comprise alpha or beta position isomers. The vinylidene (alpha) isomer content of the product may range from 20% to 70% thereof, and the content of tetra-substituted internal double bonds is very low, advantageously no more than about 10%, preferably less than about 5% and ideally less than about 1-2%.
Abstract:
Polyolefin product produced using process conducted in apparatus for olefin polymerization which includes one or more shell and tube olefin polymerization reactors, each of which has an olefin polymerization reaction mixture inlet connection and a crude polyolefin product outlet connection. Each reactor is equipped with a recirculation system including a pump arranged to circulate a reaction mixture through the tube side of the reactor independently of the introduction of olefin polymerization reaction mixture into the reactor. The apparatus may also include an inlet reaction mixture distribution manifold and an outlet polymerization reaction mixture collection manifold interconnecting the reactors for operation in parallel. The apparatus also includes catalyst composition and catalyst modifier inlets for each reactor arranged such that a catalyst modifier to may be introduced into each reactor at a rate which is independent of the introduction of catalyst composition.
Abstract:
A novel liquid phase polymerization process for preparing a polyolefin product having preselected properties is disclosed. The process includes the steps of providing a liquid feedstock which contains an olefinic component and a catalyst composition consisting of a stable complex of BF3 and a complexing agent therefor. The feedstock may comprise any one or more of a number of olefins including branched olefins such as isobutylene, C3 to C15 linear alpha olefins and C4 to C15 reactive non-alpha olefins. The feedstock and the catalyst composition are introduced into a residual reaction mixture recirculating in a loop reactor reaction zone provided in the tube side of a shell and tube heat exchanger at a recirculation rate sufficient to cause intimate intermixing of the residual reaction mixture, the added feedstock and the added catalyst composition. The heat of the polymerization reaction is removed from the recirculating intimately intermixed reaction admixture at a rate calculated to provide a substantially constant reaction temperature therein while the same is recirculating in said reaction zone. The conditions in the reactor are appropriate for causing olefinic components introduced in said feedstock to undergo polymerization to form the desired polyolefin product in the presence of the catalyst composition. A product stream containing the desired polyolefin product is withdrawn from the reaction zone. The introduction of the feedstock into the reaction zone and the withdrawal of the product stream from the reaction zone are controlled such that the residence time of the olefinic components undergoing polymerization in the reaction zone is appropriate for production of the desired polyolefin product.
Abstract:
A novel liquid phase polymerization process for preparing a polyolefin product having preselected properties is disclosed. The process includes the steps of providing a liquid feedstock which contains an olefinic component and a catalyst composition consisting of a stable complex of BF3 and a complexing agent therefor. The feedstock may comprise any one or more of a number of olefins including branched olefins such as isobutylene, C3 to C15 linear alpha olefins and C4 to C15 reactive non-alpha olefins. The feedstock and the catalyst composition are introduced into a residual reaction mixture recirculating in a loop reactor reaction zone provided in the tube side of a shell and tube heat exchanger at a recirculation rate sufficient to cause intimate intermixing of the residual reaction mixture, the added feedstock and the added catalyst composition. The heat of the polymerization reaction is removed from the recirculating intimately intermixed reaction admixture at a rate calculated to provide a substantially constant reaction temperature therein while the same is recirculating in said reaction zone. The conditions in the reactor are appropriate for causing olefinic components introduced in said feedstock to undergo polymerization to form the desired polyolefin product in the presence of the catalyst composition. A product stream containing the desired polyolefin product is withdrawn from the reaction zone. The introduction of the feedstock into the reaction zone and the withdrawal of the product stream from the reaction zone are controlled such that the residence time of the olefinic components undergoing polymerization in the reaction zone is appropriate for production of the desired polyolefin product.
Abstract:
Apparatus for olefin polymerization includes one or more shell and tube olefin polymerization reactors, each of which has an olefin polymerization reaction mixture inlet connection and a crude polyolefin product outlet connection. Each reactor is equipped with a recirculation system including a pump arranged to circulate a reaction mixture through the tube side of the reactor independently of the introduction of olefin polymerization reaction mixture into the reactor. The apparatus may also include an inlet reaction mixture distribution manifold and an outlet polymerization reaction mixture collection manifold interconnecting the reactors for operation in parallel. The apparatus also includes catalyst composition and catalyst modifier inlets for each reactor arranged such that a catalyst modifier to may be introduced into each reactor at a rate which is independent of the introduction of catalyst composition.
Abstract:
A liquid phase polymerization process for preparing low molecular weight, highly reactive polyisobutylene. The process includes the steps of providing a feedstock containing isobutylene and a catalyst composition made up of a complex of BF3 and a complexing agent. The feedstock and the catalyst composition are introduced into a residual reaction mixture in a reaction zone where the residual reaction mixture, the feedstock and the catalyst composition are intimately intermixed so as to present an intimately intermixed reaction admixture in said reaction zone. The intimately intermixed reaction admixture is maintained in its intimately intermixed condition and kept at a temperature of at least about 0° C. while the same is in the reaction zone, whereby the isobutylene therein is polymerized to form polyisobutylene having a high degree of terminal unsaturation. A product stream is withdrawn from the reaction zone. The introduction of feedstock into the reaction zone and the withdrawal of the product stream from the reaction zone are controlled such that the residence time of the isobutylene undergoing polymerization in the reaction zone is no greater than about 4 minutes whereby the product stream contains a low molecular weight, highly reactive polyisobutylene product. Preferably the reaction may be conducted on the tube side of a shell-and-tube exchanger in which a coolant is circulated on the shell side.