摘要:
A semiconductor memory includes a plurality of memory cells arranged along rows and columns, each cell having a floating gate, a drain region, a source region, a program gate terminal, and a select gate terminal. The program gate terminals of the cells along each row of cells are connected together forming a continuous program gate line. The select gate terminals of the cells along each row of cells are connected together forming a continuous select gate line. The source regions of the cells along each row of cells are connected together forming a continuous source line. The cells along each column are divided into a predesignated number of groups, and the drain regions of the cells in each group are connected to a local bitline extending across the cells in the group of cells. A global bitline extends along every two columns of cells, and is configured to selectively provide electrical connection to the local bitlines along the corresponding two columns of cells. The floating gate of each cell is from a first layer polysilicon, the program gate lines are from a second polysilicon layer, the select gate lines are from a third polysilicon layer, and the source lines are diffusion lines.
摘要:
A semiconductor coupon-service system, includes a coupon-service module for managing a semiconductor service; a coupon generator, in connection with the semiconductor service, for generating a coupon associated with the semiconductor service; and a coupon maintainer, in connection with the semiconductor service, for processing coupon operations associated with the coupon.
摘要:
A method of forming a semiconductor memory having rows and columns of memory cells is as follows; forming a plurality of rows of program gate lines from a second layer polysilicon; forming a plurality of rows of select gate lines from a third polysilicon layer; forming a plurality of rows of diffusion source lines: forming a plurality of local bitlines from a first layer metal, the cells along each column being divided into a pre-designated number of groups, and drains of the cells in each group being connected to a local bitline extending across the cells in the group of cells; and forming a plurality of global bitlines from a second layer metal extending along every two columns of cells, each global bitline being configured to selectively provide electrical connection to the local bitlines along the corresponding two columns of cells.
摘要:
Ion implanted resistors formed in the body of a crystalline silicon substrate. The resistors have a different conductivity type from that of the silicon substrate. The sheet resistance and temperature dependence of the resistor layer is determined by the dose of the implant. Temperature variation can be optimized to be less than 2% over the temperature range −40 C to +85 C. Furthermore, the temperature variation at room temperature (˜25 C) can be reduced to nearly zero.
摘要:
A field oxide device (FOD) useful for electrostatic discharge (ESD) protection and other applications. The FOD is characterized as being capable of achieving a relatively low breakdown voltage and capable of handling relatively high currents during an ESD event. In general, the FOD includes a zener junction to promote an earlier breakdown of the device. The zener junction also provides a planar-like breakdown region which makes it capable of handling relatively high currents. In particular, the FOD includes a p-doped substrate having a drain-side n+ diffusion region and a source-side n+ diffusion region which are separated by a field oxide. The FOD further includes a p+ doped region that interfaces with the drain-side n+ diffusion region to form a zener junction. The breakdown voltage of the FOD can be easily set by controlling the doping concentration and energy of the p+ doped region. The FOD may additionally include one or more n+ regions at the respective boundaries of the drain-side and source-side n+ diffusion regions to provide improved junction curvature. In addition to the field oxide interposed between the drain-side and source-side n+ diffusion regions, field oxides can be added respectively at the drain and source ends to provide isolation from other devices within an integrated circuit.
摘要:
A silicon controlled rectifier (SCR) serving as an electrostatic discharge (ESD) protection device having a vertical zener junction for triggering breakdown. The SCR includes a p-doped substrate having an n-doped well, spaced-apart p+ and n+ doped regions for cathode connection formed within the n-doped well, and spaced-apart p+ and n+ doped regions for anode connection formed with the p-substrate external to the n-doped well. The SCR further includes a vertical zener junction situated between the anode n+ doped region and the n-well. The vertical zener junction has a p+ doped region sandwiched between two n+ doped regions. The n+ doped region of the vertical zener junction closest to the n-well may extend at least partially within the n-well, or be totally outside of the n-well. The SCR may further include respective field oxides between the anode p+ and n+ doped regions, between the anode n+ doped region and the vertical zener junction, and between the vertical zener junction and the n-doped well. Also provided is an n-doped substrate version of the SCR. The SCR with the vertical zener junction is characterized as having a relatively low breakdown voltage, having improved current handling capability for more reliable and robust operations, and having a breakdown voltage dependent on the doping concentration of the lighter doped p+ or n+ doped region of the vertical zener junction.
摘要:
A two-terminal fuse-antifuse structure comprises a horizontal B-fuse portion and a vertical A-fuse portion disposed between two metallization layers of an integrated circuit device. The two-terminal fuse-antifuse can be programmed with a relatively high current applied across the two terminals to blow the B-fuse, or with a high voltage applied across the two terminals to program the A-fuse. Such a device, connected between two circuit nodes, initially does not provide an electrical connection between the two circuit nodes. It may then be programmed with a relatively high voltage to blow the A-fuse, causing it to conduct between the two circuit nodes. Then, upon application of a relatively high current between the two circuit nodes, the B-fuse will blow, making the device permanently non-conductive. An improvement permitting higher current programming of B-fuses either alone or as part of Ab-fuse structures, incorporates an air gap which provides a pocket of space either above, below or both above and below the B-fuse portion of the device. This air gap provides a place for material disrupted (melted or vaporized) by a fuse or Ab-fuse programming event to go, eliminates direct contact between the dielectric material and the fuse-portion of the device, and also thermally isolates the melted fuse material from the dielectric, thus reducing the physical stress within the dielectric itself associated with high current programming and avoiding undesired collateral damage normally associated with high current programming events. The creation of an air gap around the fuse neck is accomplished by the removal of a sacrificial layer of an oxidizable polymer material in a gaseous and/or plasma state through a small hole in the dielectric referred to as a sacrificial via opening or just "sacrificial via". After removal of the oxidizable polymer material through the sacrificial via, the sacrificial via is sealed with a passivation layer formed of a polymeric material to prevent damage to the underlying structure. The integration of the air gap and sacrificial via sealing into the current fuse process manufacturing requires the following additional processing steps: (1) Air gap definition; (2) Air gap evacuation with oxygen plasma; (3) the application of the sealing polymer; and (4) the curing of the sealing polymer.
摘要:
A semiconductor coupon-service system, includes a coupon-service module for managing a semiconductor service; a coupon generator, in connection with the semiconductor service, for generating a coupon associated with the semiconductor service; and a coupon maintainer, in connection with the semiconductor service, for processing coupon operations associated with the coupon.
摘要:
A method for fabricating a triple self-aligned non-volatile memory device is disclosed. The method includes forming isolation oxide on a substrate. A plurality of floating gates are formed by depositing and self-aligning a first polysilicon layer to the isolation oxide. A common source area is then defined on the substrate between the floating gates. A second polysilicon layer is deposited over the common source area and self-aligned with respect to the isolation oxide. A third polysilicon layer is deposited adjacent to the plurality of floating gates. A plurality of select gates are then formed by self-aligning the third polysilicon layer to the isolation oxide. Furthermore, at least one drain area is defined on the substrate.
摘要:
A method of forming a capacitor on a substrate includes forming a first polysilicon layer overlying the substrate to define a floating gate. A second polysilicon overlying the first polysilicon layer is formed to define a control gate and a first electrode of the capacitor. A dielectric layer is formed over the second polysilicon layer. A third polysilicon layer is formed over the dielectric layer. The third polysilicon layer is etched to define a second electrode of the capacitor. Thereafter the dielectric layer is etched.