Abstract:
The invention relates to immunogenic compositions comprising recombinant multimeric influenza proteins or parts thereof fused to a streptavidin affinity tag, preferably recombinant trimeric influenza virus hemagglutinin and/or recombinant tetrameric influenza virus neuraminidase, or vectors comprising nucleic acid sequences encoding such influenza proteins. The inventions further relate to methods for the preparation of such immunogenic compositions and uses thereof and methods for eliciting an immune response in an individual.
Abstract:
The invention relates to the field of coronaviruses and diagnosis, therapeutic use, and vaccines derived therefrom. The invention provides replicative coronaviruses and virus-like particles (VLPs) from which large parts of their genome are (at least functionally) deleted without abolishing their replicative capacities. The deletion preferably results in at least a functional deletion in that the corresponding gene is not or is only partly expressed wherein the resulting gene product is dysfunctional or at least functionally distinct from a corresponding wild-type gene product. One result seen with VLPs provided with deletions as provided herein is that the deleted VLP, albeit capable of replication in vitro and in vivo, are generally well attenuated, in that they do not cause disease in the target host, making them very suitable for therapeutic use, such as a delivery vehicle for genes and other cargo (wherein specific targeting may be provided as well when desired), and for use as a vaccine, being attenuated while carrying important immunogenic determinants that help elicit an immune response.
Abstract:
The invention relates to the field of immunology and vaccine development, in particular to the development of vaccines based on native antigen oligomers. Provided is an immunogenic composition in particulate form, comprising oligomers of a surface exposed polypeptide of pathogenic origin or tumor origin, or antigenic part thereof, said oligomers being bound non-covalently to a particulate carrier, and a pharmaceutically acceptable diluent or excipient. Also provided is a recombinant polypeptide comprising (A) an N- or C-terminal antigenic domain, comprising at least one surface exposed polypeptide of pathogenic or tumor origin, or antigenic part thereof, the antigenic domain being fused to (B) an oligomerization domain (OMD), said oligomerization domain being fused via (C) a linker domain to (D) a peptidoglycan binding domain (PBD) consisting of a single copy of a LysM domain capable of mediating the non-covalent attachment of the polypeptide to a non-viable bacterium-like particle (BLP) obtained from a Gram-positive bacterium.
Abstract:
The invention relates to the field of immunology and vaccine development, in particular to the development of vaccines based on native antigen oligomers. Provided is an immunogenic composition in particulate form, comprising oligomers of a surface exposed polypeptide of pathogenic origin or tumour origin, or antigenic part thereof, said oligomers being bound non-covalently to a particulate carrier, and a pharmaceutically acceptable diluent or excipient. Also provided is a recombinant polypeptide comprising (A) an N- or C-terminal antigenic domain, comprising at least one surface exposed polypeptide of pathogenic or tumour origin, or antigenic part thereof, the antigenic domain being fused to (B) an oligomerization domain (OMD), said oligomerization domain being fused via (C) a linker domain to (D) a peptidoglycan binding domain (PBD) consisting of a single copy of a LysM domain capable of mediating the non-covalent attachment of the polypeptide to a non-viable bacterium-like particle (BLP) obtained from a Gram-positive bacterium.