Abstract:
A method and device for reducing the timing jitter in a passive Q-switched Nd:YAG solid state laser by spatially selective bleaching a thin sheet of a saturable absorber of Cr+4:YAG from a direction orthogonal to the direction of laser emission where the Cr+4:YAG transmission increases 18% when the bleaching probe beam is a single laser diode bar. For steady state operation of a passive Q-switched laser, the pulse-to-pulse timing jitter showed a −12× reduction in standard deviation from 241 nsec for free running operation to 20 nsec with optical triggering.
Abstract:
The compact Er:Yb:Glass Laser Cavity incorporates all optical components required for a short-pulse laser. These optical components are ‘locked’ into alignment forming an optical laser cavity for diode laser or flash lamp pumping. The optical laser cavity does not need optical alignment after it is fabricated. The improvement upon the original Er:Yb:Glass design replaces the Cobalt Spinel passive Q-switch component with a MEMS active Q-Switch component.
Abstract:
A system and method for registering 3D data sets is disclosed based on manual fiducial selection. The technique is useful in imaging obscured targets with 3-D imaging laser radars. For such an exemplary method, which defines a three-dimensional linear shift vector for each data voxel, four fiducials are required to completely define the mapping for a 3D space. An exemplary registration algorithm as disclosed provides an approach to automatically make fine adjustments to the 3D data registration. The tedious technique of shifting data sets relative to each other, in many degrees of freedom, is eliminated. Instead, a fine adjust is applied to the digital mapping function, through fiducial perturbation.
Abstract:
A monoblock laser cavity incorporates optical components for a short-pulse laser. These optical components are ‘locked’ into alignment forming an optical laser cavity for flash lamp or diode laser pumping. The optical laser cavity does not need optical alignment after it is fabricated, increasing the brightness of the monoblock laser.
Abstract:
A laser cavity assembly for high power optical range-finders consisting of two rods of lasing material co-axially mounted on a thin substrate of the same or thermally equivalent material, selected end-faces of the rods being bonded to layers or wafers of optical materials chosen from a group consisting of materials used in Q-switches, filters, matching transformers, linear polarizers and reflecting mirrors.
Abstract:
A subassembly for a high powered light pumped, Q-switched and linearly polarized laser with an optical parametric oscillator, the subassembly consisting of two or three rod shaped elements having precisely ground endfaces with selected coatings mounted on a special pallet that at least partially aligns the optical axes of the elements.
Abstract:
A monoblock laser cavity incorporates optical components required for a short-pulse laser. These optical components are ‘locked’ into alignment forming an optical laser cavity for flash lamp or diode laser pumping. Optical alignment is not necessary after the optical laser cavity is fabricated. An exemplary Q-switched monoblock laser replaces the Cr:YAG Q-switch functionality with a MEMS scanner.
Abstract:
A method and device for reducing the timing jitter in a passive Q-switched Nd:YAG solid state laser by spatially selective bleaching a thin sheet of a saturable absorber of Cr+4:YAG from a direction orthogonal to the direction of laser emission where the Cr+4:YAG transmission increases 18% when the bleaching probe beam is a single laser diode bar. For steady state operation of a passive Q-switched laser, the pulse-to-pulse timing jitter showed a −12× reduction in standard deviation from 241 nsec for free running operation to 20 nsec with optical triggering.
Abstract:
A monoblock laser cavity includes a plurality of discrete optical components disposed serially on a substrate and sharing a common optical axis. The optical components include a laser rod of gain material, a Q-switch, an OPO crystal, and an output coupler. The output coupler has at least one convex end face to improve the beam quality.
Abstract:
The laser obstacle avoidance device of the present invention includes an optical head which includes a laser source which produces a laser signal, crossed cylindrical lenses and through which the laser signal is transmitted, a transceiver including a receiving lens through which a reflected laser signal is received by the transceiver, a receiver and a line filter through which the reflected laser signal is filtered, and scanners which receive the reflected laser signal; and control electronics optically connected to the optical head, wherein the control electronics comprise scanner driver electronics, range processor electronics, power converters, and a display all which produce an x-y display of the terrain scanned by the laser signal wherein the X-axis is driven by a scanner position output and the Y-axis by range data. The system was designed to avoid hazards with emphasis simplicity and low cost. The device has been employed in the field to collect data from natural and man-made objects. A simple, single scan line, range discontinuity detection program has been written and tested. The next step in the process is to interface the output of the processor with driver's display indicating the location of the potential hazard for the operator's closer scrutiny.