Abstract:
A monoblock laser cavity incorporates optical components required for a short-pulse laser. These optical components are ‘locked’ into alignment forming an optical laser cavity for flash lamp or diode laser pumping. Optical alignment is not necessary after the optical laser cavity is fabricated. An exemplary Q-switched monoblock laser replaces the Cr:YAG Q-switch functionality with a MEMS scanner.
Abstract:
A method and device for reducing the timing jitter in a passive Q-switched Nd:YAG solid state laser by spatially selective bleaching a thin sheet of a saturable absorber of Cr+4:YAG from a direction orthogonal to the direction of laser emission where the Cr+4:YAG transmission increases 18% when the bleaching probe beam is a single laser diode bar. For steady state operation of a passive Q-switched laser, the pulse-to-pulse timing jitter showed a −12× reduction in standard deviation from 241 nsec for free running operation to 20 nsec with optical triggering.
Abstract:
A YAG/Nd:YAG block where an Nd:YAG block ends in a peak integrated inside a YAG block. The YAG block has reflective surfaces positioned at 45° to one another. The angled reflective surfaces serve as a “mirror” within the laser cavity to effectively increase the length of the cavity by a factor greater than 2. Fused to the output end of the laser cavity are a polarizer, an active/passive Q-switch, a one quarter waveplate and an output coupler. In operation, the laser cavity is pumped either from the side or the end of the cavity. The optical components of the present invention are bonded to form one optical ‘block’. All the components are prealigned during the crystal manufacturing process to form the optical laser cavity. The width of the cavity should be selected such that nearly all of the laser diode pump output is absorbed by the cavity.
Abstract:
A monoblock laser cavity includes a plurality of discrete optical components disposed serially on a substrate and sharing a common optical axis. The optical components include a laser rod of gain material, a Q-switch, an OPO crystal, and an output coupler. The output coupler has at least one convex end face to improve the beam quality.
Abstract:
The laser obstacle avoidance device of the present invention includes an optical head which includes a laser source which produces a laser signal, crossed cylindrical lenses and through which the laser signal is transmitted, a transceiver including a receiving lens through which a reflected laser signal is received by the transceiver, a receiver and a line filter through which the reflected laser signal is filtered, and scanners which receive the reflected laser signal; and control electronics optically connected to the optical head, wherein the control electronics comprise scanner driver electronics, range processor electronics, power converters, and a display all which produce an x-y display of the terrain scanned by the laser signal wherein the X-axis is driven by a scanner position output and the Y-axis by range data. The system was designed to avoid hazards with emphasis simplicity and low cost. The device has been employed in the field to collect data from natural and man-made objects. A simple, single scan line, range discontinuity detection program has been written and tested. The next step in the process is to interface the output of the processor with driver's display indicating the location of the potential hazard for the operator's closer scrutiny.
Abstract:
A one piece laser assembly including a rod of gain medium with one end-face bonded to a broad end-face on a stack of optical wafers that process light differently and mirrors plated on the remaining exposed end-faces of the rod and the stack of wafers.
Abstract:
The heterodyne detection efficiency of coherent laser radars is maximized coaxially aligning the local oscillator (LO) beam and the received laser beam when combined at the detector by preventing interference between the counterpropagating waves in the lasing rod within the lasing cavity by using optic polarization, magneto-optic polarization, and cavity end partial reflectors.
Abstract:
Lightweight low power IR locater for reflection enhanced targets with .apeq.20 microsecond pulsed IR diode laser and 26 40 microsecond synchronized range-gated image.
Abstract:
A laser gain medium crystal comprising a square rod of laser gain medium material having top and bottom surfaces that are finely ground to introduce scattering surfaces to cancel parasitic lasing. The square rod of laser gain material has input and output faces and side surfaces, and portions of the side surfaces near the output face of the square rod are finely ground to introduce scattering surfaces to cancel parasitic lasing. The rest of the side surfaces of the square rod are polished.
Abstract:
An improved monoblock laser cavity is made by elongating the Optical parametric oscillation (OPO) cavity. This can be accomplished by changing the coatings on the OPO material and Q-switch and by elongating the OPO cavity to approximately 2 to 3 times the OPO crystal length. The increase in the length of the OPO cavity will improve the beam divergence of the laser.