摘要:
A particulate filter ash loading prediction method including the steps of determining a maximum average lifetime for the particulate filter; performing a calculation of a running average of time between regenerations of the particulate filter; calculating an end-of-service-life ratio of the particulate filter dependent upon the maximum average lifetime and the running average; and comparing the end-of-service-life ratio to a predetermined minimum end-of-service-life ratio. If the end-of-service-life ratio is equal to or less than the minimum end-of-service-life ratio then indicating that at least one of service and replacement of the particulate filter is needed due to ash loading.
摘要:
A particulate filter ash loading prediction method including the steps of determining a maximum average time for the filter; performing a calculation of a running average of time between regenerations of the filter; calculating an end-of-service life ratio of the filter dependent upon the maximum average time and the running average. The method further includes the steps of determining a delta pressure adjustment factor to compensate for ash loading of the filter depending upon the end-of-service life ratio; and comparing the delta pressure adjustment factor to a predetermined maximum delta pressure value, and, if the delta pressure adjustment factor exceeds the predetermined maximum normalized delta pressure adjustment factor, then indicating that a service or replacement of the filter is needed due to the ash loading.
摘要:
A method for determining the service interval of a particulate filter including the steps of determining a normalized current pressure differential across the particulate filter and determining a normalized pressure differential across the particulate filter for clean conditions. The clean pressure normalized pressure differential is subtracted from the current differential and divided by the time between regeneration to determine a current factor. A maximum factor is predetermined and compared to the current factor to determine service life for the particulate filter.
摘要:
A treatment element and an exhaust emission control device for the treatment of gases in an exhaust passage of an internal combustion engine and methods of making thereof are described. In the method, at least two different catalyst compositions are applied along the major axis length of a single substrate to form a treatment element having at least two different zones of catalyst composition.
摘要:
A particulate filter (PF) ash loading prediction method includes the steps of: regenerating the PF using a first soot loading prediction model or a second soot loading prediction model; determining whether the regeneration of the PF was initiated by the first soot loading prediction model or the second soot loading prediction model; incrementing a first counter associated with the first soot loading prediction model or a second counter associated with the second soot loading prediction model, dependent on the determining step; comparing a ratio of the first counter and the second counter; and establishing whether the PF requires servicing, dependent on the ratio.
摘要:
A process for controlling an exhaust system can comprise flowing exhaust gas from the engine past a first oxygen sensor, through a NOx adsorber, past a second oxygen sensor, through a catalyst and past a third oxygen sensor, wherein the first oxygen sensor, the second oxygen sensor, and the third oxygen sensor, are in operable communication with an electronic control module, and using a switching delay between the first oxygen sensor and the second oxygen sensor to determine a NOx value, wherein the NOx value is selected from the group consisting of a NOx regeneration time, a stored NOx amount, a NOx storage efficiency, and combinations comprising at least one of the foregoing NOx values. A desulfurization process can be initiated when the NOx value is less than or equal to a first selected value. During the desulfurization process, when the third oxygen sensor signals a condition rich of stoichiometry, oxygen can be provided to the catalyst.
摘要翻译:用于控制排气系统的过程可以包括使来自发动机的废气经过第一氧传感器,通过NOx吸附器流过第二氧传感器,经过催化剂并经过第三氧传感器,其中第一氧传感器,第二氧传感器 氧传感器和第三氧传感器可与电子控制模块可操作地通信,并且使用第一氧传感器和第二氧传感器之间的切换延迟来确定NO x x值,其中 NO > SUB>值选自NO NO x x再生时间,存储的NO x x N,NO NO x, / SUB>存储效率,以及包括前述NO x x值中的至少一个的组合。 当NO >小于或等于第一选定值时,可以开始脱硫过程。 在脱硫过程中,当第三氧传感器发出一个充满化学计量的条件时,可向催化剂提供氧气。
摘要:
In one embodiment, a catalyst configuration, comprises: a substrate, a NiO layer disposed on the substrate, wherein the NiO layer comprises greater than or equal to about 75 wt % of the NiO in the catalyst configuration; and a catalyst layer comprising a NOx adsorbing catalyst. In another embodiment, a catalyst configuration, comprises: a substrate, a catalyst layer disposed on the substrate, wherein the catalyst layer comprises a NOx adsorbing catalyst and thermally treated NiO.In one embodiment, the method for making a NOx adsorber comprises: thermally treating NiO to a temperature of about a maximum catalyst application temperature minus 100° C. and the maximum catalyst application temperature, disposing a catalyst configuration on the substrate, wherein the catalyst configuration comprises the thermally treated NiO and a NOx adsorption catalyst, and disposing the substrate in a housing.
摘要:
A NOx adsorber composition comprising a substrate; and a washcoat, wherein said washcoat comprises a catalytic metal component, a trapping material, and a porous support, wherein said porous support comprises cerium oxide and an oxygenated metal selected from the group consisting of lanthanum oxide, yttrium oxide, neodymium oxide, and combinations comprising at least one of the foregoing oxygenated metals.
摘要:
A method for determining the service interval of a particulate filter including the steps of determining a normalized current pressure differential across the particulate filter and determining a normalized pressure differential across the particulate filter for clean conditions. The clean pressure normalized pressure differential is subtracted from the current differential and divided by the time between regeneration to determine a current factor. A maximum factor is predetermined and compared to the current factor to determine service life for the particulate filter.
摘要:
A particulate filter ash loading prediction method including the steps of determining a maximum average lifetime for the particulate filter; performing a calculation of a running average of time between regenerations of the particulate filter; calculating an end-of-service-life ratio of the particulate filter dependent upon the maximum average lifetime and the running average; and comparing the end-of-service-life ratio to a predetermined minimum end-of-service-life ratio. If the end-of-service-life ratio is equal to or less than the minimum end-of-service-life ratio then indicating that at least one of service and replacement of the particulate filter is needed due to ash loading.