Abstract:
An exemplary method for the temperature correction of a force-measuring device such as a balance is disclosed. The method includes generating, by means of a force-measuring cell, a force measurement signal corresponding to the input force; generating an electrical temperature measurement signal by means of a temperature sensor that is arranged at a distance from the heat-generating components of the force-measuring device, processing the force measurement signal into a temperature-corrected output signal based on the temperature measurement signal and the force measurement signal; and transmitting the output signal to an indicator unit and/or to a further processing unit.
Abstract:
A force-measuring device (100) with at least one housing (20) has an interior space and at least one force-measuring cell (110) installed therein. At least one parameter characterizing an existing high-frequency electromagnetic field is determined by a sensor (50) arranged in the interior space or a sensor arranged outside of the housing, the sensor being adapted for detecting high-frequency electromagnetic fields. After an electromagnetic field is detected and compared to a threshold value, a response action of the force-measuring device is triggered if the detected parameter value exceeds the threshold value.
Abstract:
The force-measuring device includes a measuring unit and a reference unit, the latter serving to deliver a reference quantity, a reference current (IREF) or a reference voltage (UREF), by means of which the force (FMO) of a measurement object which is to be determined can be measured by the measuring unit. According to the invention, the reference unit is a force-measuring device which is loaded with a reference mass and which in accordance with the principle of electromagnetic force compensation generates a reference current (IREF) that can be regulated by means of a measuring- and regulating device in such a way that in a first reference coil which is held by a reference lever the reference current (IREF) generates a magnetic field which cooperates with the magnetic field of a reference magnet in such a way that a magnetic force is brought to bear on the reference lever, wherein the force (FREF) of the reference mass which is likewise acting on the reference lever can be compensated by said magnetic force.
Abstract translation:力测量装置包括测量单元和参考单元,后者用于传送参考量,参考电流(参考电压)或参考电压(U SUB REF / / SUB) >),通过该测量单元可以测量要被确定的测量对象的力(F )。 根据本发明,参考单元是装载有参考质量的力测量装置,其根据电磁力补偿的原理产生可以是参考质量的参考电流(I SUB REF REF) 通过测量和调节装置进行调节,使得在由参考杆保持的第一参考线圈中,参考电流(I REF REF)产生与磁性配合的磁场 参考磁体的磁场使得磁力承受在基准杆上,其中同样作用在基准杆上的参考质量块的力(F REF)可以是 由所述磁力补偿。
Abstract:
A device and method for effectuating the temperature compensation testing of digital load cells. The device uses conductive heat transfer to establish and maintain the temperature of the load cell(s) during testing. The device may include a vessel into which one or more load cells to be tested are placed. Temperature control of the load cells may be accomplished by circulating a temperature controlled fluid through the vessel. The vessel containing the one or more load cells may then be placed in a load application device that applies a load(s) to the one or more load cells during testing. Readings from the one or more load cells are used to establish a temperature compensation factor for each load cell tested. In other embodiments, temperature control of the load cells may be accomplished by placing the load cells in contact with a solid heat transfer element(s).
Abstract:
A method, an arrangement and a program process a measurement signal generated in a measurement transducer of an electronic force-measuring device, particularly a balance. The generated measurement signal corresponds to the force acting on the transducer. The measurement signal is entered directly or by way of a pre-processing stage into a display function which assigns corresponding output values to the values of the measurement signal. The output values are subsequently presented in a display or passed on for further processing. The input range of the display function contains a capture range, so that the values of the measurement signal that lie within the capture range are assigned a common output value by the display function, and the position of the capture range within the input range is controlled dependent on the generated measurement signal.
Abstract:
A method is disclosed for correcting transfer errors of an analog amplifier that occur following a jump in the amplifier input signal caused by switching. A measuring device includes at least one sensor as well as a signal-processing unit connected to the sensor and analog amplifier. The signal-processing unit includes at least one modulator and/or a multiplexer, an analog amplifier and at least one processing stage following the analog amplifier in the circuit chain. The processing stage, dependent on the point in time when the switching jump occurs, is separated from the latter during a predetermined timeout phase duration by means of a switch that is arranged between the analog amplifier and the processing stage and is controlled by a timeout controller, and/or dependent on the point in time when the switching jump occurs, said processing stage is blocked by a timeout controller during a predetermined timeout phase duration.
Abstract:
A force-measuring device (100) with at least one housing (20) has an interior space and at least one force-measuring cell (110) installed therein. At least one parameter characterizing an existing high-frequency electromagnetic field is determined by a sensor (50) arranged in the interior space or a sensor arranged outside of the housing, the sensor being adapted for detecting high-frequency electromagnetic fields. After an electromagnetic field is detected and compared to a threshold value, a response action of the force-measuring device is triggered if the detected parameter value exceeds the threshold value.
Abstract:
An exemplary method for the temperature correction of a force-measuring device such as a balance is disclosed. The method includes generating, by means of a force-measuring cell, a force measurement signal corresponding to the input force; generating an electrical temperature measurement signal by means of a temperature sensor that is arranged at a distance from the heat-generating components of the force-measuring device, processing the force measurement signal into a temperature-corrected output signal based on the temperature measurement signal and the force measurement signal; and transmitting the output signal to an indicator unit and/or to a further processing unit.
Abstract:
The present invention relates to a device (10) for storing and restoring electrical energy comprising a chamber (100) in which water electrolysis means (110), a fuel cell (120), and monitoring/control means (130) for monitoring the operation of said device (10) in the fuel cell mode or the electrolyzer mode are arranged. Connection means (141) enable said chamber (110) to be connected to storage means (210) for storing dihydrogen (H2), which are outside of said chamber (110).
Abstract:
A device and method for effectuating the temperature compensation testing of digital load cells. The device uses conductive heat transfer to establish and maintain the temperature of the load cell(s) during testing. The device may include a vessel into which one or more load cells to be tested are placed. Temperature control of the load cells may be accomplished by circulating a temperature controlled fluid through the vessel. The vessel containing the one or more load cells may then be placed in a load application device that applies a load(s) to the one or more load cells during testing. Readings from the one or more load cells are used to establish a temperature compensation factor for each load cell tested. In other embodiments, temperature control of the load cells may be accomplished by placing the load cells in contact with a solid heat transfer element(s).