Abstract:
An exhaust system for an engine is disclosed herein. The exhaust system includes a catalytic converter, an exhaust manifold upstream from the catalytic converter, and a heat pipe in thermal contact with the exhaust manifold and atmosphere. The system further includes a phase changing material that passively absorbs heat after catalytic light-off.
Abstract:
A heat transfer method for an engine is disclosed herein utilizing a heat battery configured to store waste exhaust heat in phase-chase materials for use during a subsequent engine start. By reusing waste exhaust heat in this manner, exhaust emissions may be reduced, and delays in heating the vehicle cabin and other vehicle systems after engine start may be reduced.
Abstract:
A method for recovering exhaust heat for an engine is disclosed herein. The method includes reducing a volume of a circulating heat transfer fluid and discharging a heat storage device to heat an engine component. The method further includes distributing the circulating heat transfer fluid to one or more engine systems.
Abstract:
An exhaust system for an engine is disclosed herein. The exhaust system includes a catalytic converter, an exhaust manifold upstream from the catalytic converter, and a heat pipe in thermal contact with the exhaust manifold and atmosphere. The system further includes a phase changing material that passively absorbs heat after catalytic light-off.
Abstract:
An engine lubrication system is provided. The engine lubrication system includes an oil pan housing a lubricant, an oil pump having a pick-up tube including an inlet submerged in the lubricant, and a heat pipe assembly including a fluidly sealed heat pipe coupled to the oil pan adjacent to the inlet of the pick-up tube.
Abstract:
An engine lubrication system is provided. The engine lubrication system includes an oil pan housing a lubricant, an oil pump having a pick-up tube including an inlet submerged in the lubricant, and a heat pipe assembly including a fluidly sealed heat pipe coupled to the oil pan adjacent to the inlet of the pick-up tube.
Abstract:
A fuel delivery system is provided herein. The fuel delivery system may include a fuel tank storing a liquid fuel, a return fuel line including an outlet opening into the fuel tank, and a heat pipe assembly including a first end positioned in a surrounding atmosphere, and a second end positioned at and coupled to the return fuel line.
Abstract:
A heat transfer method for an engine is disclosed herein utilizing a heat battery configured to store waste exhaust heat in phase-chase materials for use during a subsequent engine start. By reusing waste exhaust heat in this manner, exhaust emissions may be reduced, and delays in heating the vehicle cabin and other vehicle systems after engine start may be reduced.
Abstract:
An exhaust system for an engine is disclosed herein. The exhaust system includes a catalytic converter, a heat collector downstream from the catalytic converter, and a heat transfer system receiving waste exhaust heat via a thermosyphon evaporator for storage and/or use in a cabin heating system. In this way, waste heat is utilized to provide better cabin heating, particularly at engine cold start.
Abstract:
An exhaust system for an engine is disclosed herein. The exhaust system includes a catalytic converter, a heat collector downstream from the catalytic converter, and a heat transfer system receiving waste exhaust heat via a thermosyphon evaporator for storage and/or use in a cabin heating system. In this way, waste heat is utilized to provide better cabin heating, particularly at engine cold start.