Abstract:
Strain modulated nanostructures for optoelectronic devices and associated systems and methods are disclosed. A semiconductor laser in accordance with one embodiment of the disclosure, for example, comprises an active region having a nanowire structure formed from a semiconductor material. The nanowire structure of the semiconductor material has a bandgap that is indirect in a first strain state. The laser further includes a straining unit coupled to the active region. The straining unit is configured to modulate the nanowire structure such that the nanowire structure reaches a second strain state in which the bandgap becomes direct or substantially direct and, in operation, emits photons upon electron-hole recombination.
Abstract:
Strain modulated nanostructures for optoelectronic devices and associated systems and methods are disclosed. A semiconductor laser in accordance with one embodiment of the disclosure, for example, comprises an active region having a nanowire structure formed from a semiconductor material. The nanowire structure of the semiconductor material has a bandgap that is indirect in a first strain state. The laser further includes a straining unit coupled to the active region. The straining unit is configured to modulate the nanowire structure such that the nanowire structure reaches a second strain state in which the bandgap becomes direct or substantially direct and, in operation, emits photons upon electron-hole recombination.