Abstract:
A transmitter system for providing current to a utility when performing a locate operation is disclosed. The transmitter system may include a tray apparatus, a transmitter module for generating an output current for provision to the utility so as to generate a magnetic field for detection by a utility locator disposed on or in the tray apparatus, and a sonde antenna node, a satellite antenna node, or a combined satellite navigation and sonde antenna node.
Abstract:
Camera heads configured to provide digitally articulated images or video, at adjustable resolutions and/or offsets and orientations, to a camera control unit (CCU) or other electronic computing system for display, storage, and/or transmission to other systems are disclosed.
Abstract:
A high-Q human-portable, battery-powered self-correcting tunable resonator in a transmitter apparatus for inducing alternating currents of high quality in buried conductors to facilitate their location is disclosed. The transmitter apparatus may employ an FET-driven capacitive tuning circuit and a coil design that achieves high precision, high-quality transmission signals, and which may be equipped with a high-voltage booster for facilitating fault-localization applications.
Abstract:
A ground tracking apparatus for connection to a locator or other measurement device and configured to determine position, motion, and/or orientation information is disclosed. The ground tracking apparatus may include a ground follower assembly including one or more wheels, which may be detachably coupled to a buried object locator system to capture three-dimensional positional and orientation information during a locate process, as well as provide output data or information to be integrated with maps, photographs, drawings, or other data or information.
Abstract:
Camera heads configured to provide digitally articulated images or video, at adjustable resolutions and/or offsets and orientations, to a camera control unit (CCU) or other electronic computing system for display, storage, and/or transmission to other systems are disclosed.
Abstract:
In one embodiment, a mechanically self-leveling camera head includes a rear housing assembly, an illumination window, an illumination window retainer having a forward end for holding the illumination window a threaded coupling ring for having the rear housing assembly screwed over a rear portion of the coupling ring and the illumination window retainer screwed over a forward portion of the coupling ring, and a camera module assembly supported inside the housing.
Abstract:
Intelligent modular battery pack assemblies and associated charging and docking systems are disclosed. In one embodiment a modular battery pack assembly may include an outer casing assembly, a thermally conductive structural housing element configured to house a battery assembly in an interior volume, a lid element configured to cover the opening in the thermally conductive structural housing element and mechanically strengthen the thermally conductive structural housing element, and a circuit element disposed to electrically couple the battery cell to a battery-powered device and provide viral data transfer between the battery and a coupled device.
Abstract:
Multi-frequency buried object location system transmitters and locators are disclosed. A transmitter may generate and provide output signals to a buried object at a plurality of frequencies, which may be selected based on a connection type. Corresponding locators may simultaneously receive a plurality of magnetic field signals emitted from the buried object and generate visual and/or audible output information based at least in part on the plurality of received magnetic field signals. The visual and/or audible output may be further based on signals received from a quad-gradient antenna array.
Abstract:
A self-leveling camera head includes an eccentric leveling weight assembly that is supported inside an outer housing for free rotation about an axis. The leveling weight assembly can be removably coupled to a separate camera module assembly supported inside the outer housing for rotation about the axis so that its images will be “upright”, i.e. earth normal. A slip ring assembly includes a fixedly mounted connector assembly that removably mates with a contact assembly mounted to the camera module assembly. In an alternative embodiment the camera module assembly does not rotate within the outer housing. Instead a processing circuit processes a video output from a high resolution image sensing device in the camera module assembly, generates a sub-sampled region and rotates it into a predetermined orientation for display. The output of an orientation sensor in the camera head may be processed to achieve the predetermined desired orientation of the video that is stored or displayed.
Abstract:
At least one antenna array including three mutually orthogonal antennas each sharing a common center point senses an electromagnetic signal emitted by a buried object such as a utility line, pipe or sonde. A circuit at least partially mounted in a housing is connected to the array and determines a location of the buried object by measuring signal strength and field angles in three dimensions without having to align the antenna array relative to the buried object while eliminating nulls and false peaks. A graphical user interface (GUI) has user-friendly icons, symbols, menus, numbers and graphical and auditory representation of signal strength. A plurality of different underground objects can be simultaneously detected and their different locations can be simultaneously indicated to a user via audible sounds and/or visual images on a display.