Abstract:
Disclosed herein are trogocytosis based TCR ligand discovery platforms and methods of using the same, trogocytosis based TCR discovery platforms and methods of using the same, and trogocytosis based ligand discovery platforms and methods of using the same. Also disclosed herein are isolated cells, nucleotides, sequences, and sequence databases produced using trogocytosis based discovery platforms.
Abstract:
The present invention relates to methods for producing transgenic animals, particularly transgenic rats, using retroviral constructs engineered to carry the transgene(s) of interest.
Abstract:
The present disclosure relates to regulation of macrophage activation by delivering of miRNAs, for example miR-125b or anti-miR-125b, to macrophages. For example, in some embodiments, macrophage activation can be elevated or reduced by administering miR-125b or anti-miR-125b oligonucleotides. Also disclosed are methods for promoting T cell activation and method for treating various disorders such as tumor and autoimmune diseases.
Abstract:
Sam68 plays a role in TNF-dependent signaling, including NF-kB signaling and extrinsic activation of apoptosis. In some embodiments, inhibitors of Sam68 are administered to inhibit TNF-dependent signaling, for example to inhibit NF-kB signaling or apoptosis in a patient in need. In some embodiments, functional Sam68 is administered to increase TNF-dependent signaling, for example to induce apoptosis in a patient in need. In some embodiments, methods are provided determining whether the TNF-dependent or TNF-independent branch of a signaling pathway is active in a cell or cells, or for drug screening applications.
Abstract:
Disclosed herein are methods and materials for isolating and identifying T cell receptors from single cells. In some embodiments, genomic DNA from a single T cell is isolated using whole genome amplification (WGA). A series of PCR reactions is carried out to enrich the genomic template for sequences encoding the TCR alpha and beta chains, and then to isolate the sequences encoding the TCR alpha and beta chains.
Abstract:
The present disclosure relates to the finding that microRNA-146 plays a role in modulating the development and function of the immune system. Immune cell development and function can be modulated by delivery of microRNA-146 (miR-146) or antisense miR-146 to target immune cells or precursor cells. For example, in some embodiments, activity and/or proliferation of certain immune cells is regulated by administering miR-146 oligonucleotides or anti-miR-146 oligonucleotides. In other embodiments, pro-inflammatory cytokine expression in immune cells is regulated by administering a miR-146 oligonucleotide or anti-miR-146. In further embodiments, methods of regulating macrophage activity using antisense miR-146 are provided. Additional methods and compositions for regulating immune system function and development using miR-146 are disclosed.
Abstract:
Methods and compositions are provided for delivering a polynucleotide encoding a gene of interest to a target cell using a virus. The virus envelope comprises a cell-specific binding determinant that recognizes and binds to a component on the target cell surface, leading to endocytosis of the virus. A separate fusogenic molecule is also present on the envelope and facilitates delivery of the polynucleotide across the membrane and into the cytosol of the target cell. The methods and related compositions can be used for treating patients having suffering from a wide range of conditions, including infection, such as HIV; cancers, such as non-Hodgkin's lymphoma and breast cancer; and hematological disorders, such as severe combined immunodeficiency.
Abstract:
The invention provides methods and compositions for the expression of small RNA molecules within a cell using a lentiviral vector. The methods can be used to express doubles stranded RNA complexes. Small interfering RNA (siRNA) can be expressed using the methods of the invention within a cell, which are capable of down regulating the expression of a target gene through RNA interference. A variety of cells can be treated according to the methods of the invention including embryos, embryogenic stem cells, allowing for the generation of transgenic animals or animals constituted partly by the transduced cells that have a specific gene or a group of genes down regulated.
Abstract:
Disclosed herein are methods and materials for isolating and identifying T cell receptors from single cells. In some embodiments, genomic DNA from a single T cell is isolated using whole genome amplification (WGA). A series of PCR reactions is carried out to enrich the genomic template for sequences encoding the TCR alpha and beta chains, and then to isolate the sequences encoding the TCR alpha and beta chains.