摘要:
An optical cavity structure for bending optical signals is provided. The optical cavity structure includes an input port for receiving input optical signals from a first waveguide. The optical cavity structure also includes an interconnecting structure that receives said input optical signals and interconnects said first waveguide to a second waveguide, the interconnecting structure further includes at least four straight edges that orthogonal and of a finite width. The optical cavity structure further includes an output port coupled to the interconnecting structure for providing the second waveguide with the input optical signals. Further, the optical cavity structure may be used to create three dimensional splitter devices and resonators.
摘要:
A high index difference coupler includes a high index difference waveguide having one or more modes. A plurality of gratings is formed on the high index difference waveguide. The effective index difference between low index regions and high index regions of the waveguide is greater than 0.3.
摘要:
An optical device is provided. The optical device includes a plurality of high index layers. The optical device also includes a plurality of low index layers. The optical device is formed by creating alternating layers of the plurality of high layers and the plurality of low index layers, such that electricity and heat is allowed to be conducted through said optical device.
摘要:
One or more embodiments of the instant invention may be briefly summarized as follows. A planarization and smoothing segment includes: (a) a reverse mask and etching method; a sacrificial layer and selective CMP followed by non selective CMP; or a sacrificial layer and selective etching followed by non-selective CMP. A buffer layer to protect wave guide segment includes: (a) waveguide formation followed by buffer layer deposition; or a buffer deposition over the waveguide layer followed by waveguide formation.
摘要:
A high density integrated optical chip. The optical chip features an optical function connected to a low minimum bending radius dielectric waveguide, and a large mode field size dielectric waveguide to interface with an external optical device, such as an optical fiber. The large mode field size dielectric waveguide is optically connected to the low minimum bending radius dielectric waveguide on the optical chip.
摘要:
A chip for integrating functions performed by micro-optics and RF circuits including at least one optical function module that receives an optical signal and performs at least one of a plurality of optical functions. A RF function module that receives a RF signal and perform at least one of a plurality of RF functions. The at least one optical function module and the RF function module provides a monolithic integration of optics and RF circuits on the chip.
摘要:
Methods of tuning, switching or modulating, or, in general, changing the resonance of waveguide micro-resonators. Changes in the resonance can be brought about, permanently or temporarily, by changing the size of the micro-resonator with precision, by changing the local physical structure of the device or by changing the effective and group indices of refraction of the mode in the micro-resonator. Further changing the asymmetry of the index profile around a waveguide can alter the birefringence of the waveguide and allows one to control the polarization in the waveguide. This change in index profile may be used to change the polarization dependence or birefringence of the resonators.
摘要:
Methods of tuning, switching or modulating, or, in general, changing the resonance of waveguide micro-resonators. Changes in the resonance can be brought about, permanently or temporarily, by changing the size of the micro-resonator with precision, by changing the local physical structure of the device or by changing the effective and group indices of refraction of the mode in the micro-resonator. Further changing the asymmetry of the index profile around a waveguide can alter the birefringence of the waveguide and allows one to control the polarization in the waveguide. This change in index profile may be used to change the polarization dependence or birefringence of the resonators.
摘要:
The invention features an optical chip having optical functions in large mode size waveguides. Under one aspect of the invention, the optical chip features one or more large mode field size waveguides, one or more low minimum bending radius waveguides to interconnect the large mode field size waveguides, and one or more optical functions integrated within or connected to the large mode field size waveguides.
摘要:
The invention features a programmable optical chip. The optical chip has a plurality of optical functions, each of which is connected to a waveguide having a core and a cladding. A photosensitive layer is disposed between at least three of the waveguides, and the photosensitive layer has a refractive index similar to that of the cladding prior to exposure to irradiation. The photosensitive layer changes refractive index upon exposure to irradiation to selectively form an optical connection between at least two of the waveguides.