Abstract:
Disclosed herein is a copolymer comprising isosorbide carbonate units and a polysiloxane block, wherein the copolymer comprises greater than or equal to 50 mol % isosorbide carbonate units.
Abstract:
Disclosed herein is a copolymer comprising isosorbide carbonate units and a polysiloxane block, wherein the copolymer comprises greater than or equal to 50 mol % isosorbide carbonate units.
Abstract:
Polycarbonate compositions having an aromatic polycarbonate resin with 90% or greater fluoroalkylene carbonate end-groups are formed from a partially fluorinated alcohol or a partially fluorinated polymeric alcohol, and a bisphenol and a carbonate source using melt or interfacial polymerization methods. Copolymers and blends with a variety of other bisphenols and other thermoplastics are also described. The polycarbonate compositions show high water contact angles, fluorine enrichment on the surface layer of molded articles, and good flame retardant properties and are useful in a variety of applications including medical, automotive, telecommunication and weatherable applications.
Abstract:
A composition includes a polycarbonate-polysiloxane block copolymer that has at least one polycarbonate block and at least one polysiloxane block, and a surface modifying agent that includes at least one polysiloxane segment. Increased levels of the surface modifying agent can be incorporated without compromising high transmittance and low haze. The compositions also exhibit improved hemocompatibility and are therefore useful for a variety of articles that may contact blood.
Abstract:
Polycarbonate compositions having an aromatic polycarbonate resin with 90% or greater fluoroalkylene carbonate end-groups are formed from a partially fluorinated alcohol or a partially fluorinated polymeric alcohol, and a bisphenol and a carbonate source using melt or interfacial polymerization methods. Copolymers and blends with a variety of other bisphenols and other thermoplastics are also described. The polycarbonate compositions show high water contact angles, fluorine enrichment on the surface layer of molded articles, and good flame retardant properties and are useful in a variety of applications including medical, automotive, telecommunication and weatherable applications.
Abstract:
A water resistant permanent antistatic thermoplastic composition contains about 100 parts by weight of a thermoplastic polymer, such as polycarbonate or a blend thereof, about 0.1 to about 10 parts by weight of an antistatic agent, and about 0.1 to about 10 parts by weight of a polysiloxane-polyether copolymer.
Abstract:
The disclosure relates to articles using polycarbonates produced by a melt transesterification polymerization method using bis(hydroxyaryl)cyclohexanes. Such polycarbonates have suitable glass transition temperatures and outstanding dimensional stabilities, thus making them particularly useful for making articles possessing high temperature stability, particularly for use in optical articles such as high density optical data storage and recordable media.
Abstract:
A composition, comprising, based on the total weight of the polymer components in the composition, 1 to 40 wt. % of an aromatic polycarbonate, 30 to 98.8 wt. % of a polysiloxane-polycarbonate block copolymer, and 0.1 to 10 wt. % of a polysiloxane-polyimide block copolymer comprising more than 20 wt. % polysiloxane blocks, based on the total weight of the polysiloxane-polyimide copolymer. The compositions provide articles with low haze, high luminous transmittance, and good hydro-aging properties. The articles can further be formulated to have excellent flame retardance, particularly when KSS is used.
Abstract:
Disclosed herein is a polycarbonate copolymer comprising A) a structure derived from a dihydroxy alkylene oxide compound selected from the group consisting of formula (1a) and formula (1b): H-(E-X)l—OH (1a) H-(E-X-E)l-OH (1b) wherein E and X are different and each and independently are selected from the group consisting of formula (2a) and formula (2b): —(OCH2CH2)m— (2a) —(OCHRCH2)n— (2b) wherein R is a C1-8 alkyl group; l, m, and n are integers greater than or equal to 1; and wherein the weight average molecular weight of the total amount of the structures corresponding to formula (2b) in the copolymer is between 100 and 2,000 g/mol; and B) a structure derived from a dihydroxy aromatic compound, wherein the weight percentages are based on the total weight of the structures of A) and B).
Abstract:
A method comprising treating an article with steam, wherein the article comprises a composition comprising an amount of a polysiloxane-polycarbonate copolymer effective to provide thermal and hydrolytic stability to the article for at least 15 cycles, wherein each cycle comprises 20 minutes of contact with steam at 100° C., at atmospheric pressure. The articles are of utility in a wide variety of applications such as food service and medical applications.