摘要:
A method for managing hydrates in a subsea production system is provided. The production system includes a host production facility, a control umbilical, at least one subsea production well, and a single production line. The method generally comprises producing hydrocarbon fluids from the at least one subsea production well and through the production line, and then shutting in the production line. In addition, the method includes the steps of depressurizing the production line to substantially reduce a solution gas concentration in the produced hydrocarbon fluids, and then repressurizing the production line to urge any remaining gas in the free gas phase within the production line back into solution. The method also includes displacing production fluids within the production line by moving displacement fluids from a service line within the umbilical line and into the production line. The displacement fluids preferably comprise a hydrocarbon-based fluid having a low dosage hydrate inhibitor (LDHI).
摘要:
Provided are apparatus, systems, and methods for generating a non-plugging hydrate slurry. The apparatus, systems, and methods for generating a hydrate slurry are useful for transport and/or production of wellstream hydrocarbons in subsea and arctic environments. The present invention provides methods of seeded or unseeded methods of making dry hydrates. Dry hydrates are made with or without the aid of chemicals and, preferably, with minimum use of rotating or other energized equipment.
摘要:
Provided are piggable static mixers, apparatus for generating a non-plugging hydrate slurry, systems incorporating the same, and methods of using the same. Piggable static mixers include an inlet orifice, an outlet orifice in fluid communication with the inlet orifice, and a mechanism fluidly coupled between the inlet and outlet orifices. The mechanism is configurable between a first state and a second state. Fluid flow between the inlet and outlet orifices is substantially unimpeded when the mechanism is in the first state. A static mixer element impinges upon the fluid flow when the mechanism is in the second state. The system further includes a production facility and a production line. The system and methods provided are useful for production of wellstream hydrocarbons from subsea and arctic environments.
摘要:
A method for managing hydrates in a subsea production system is provided. The production system includes a host production facility, a control umbilical, at least one subsea production well, and a single production line. The method generally comprises producing hydrocarbon fluids from the at least one subsea production well and through the production line, and then shutting in the production line. In addition, the method includes the steps of depressurizing the production line to substantially reduce a solution gas concentration in the produced hydrocarbon fluids, and then repressurizing the production line to urge any remaining gas in the free gas phase within the production line back into solution. The method also includes displacing production fluids within the production line by moving displacement fluids from a service line within the umbilical line and into the production line. The displacement fluids preferably comprise a hydrocarbon-based fluid having a low dosage hydrate inhibitor (LDHI).
摘要:
Described herein is a local electrical room (LER) for use in an industrial facility such as an oil and gas facility. The LER includes one or more robots that perform functions on the electrical equipment enclosed therein. The LER is filled with a non-atmospheric fluid or gas and may be cooled and/or pressurized for optimal performance of the electrical equipment.
摘要:
A hydrogen sulfide (H2S) scavenging system for removing H2S, mercaptans, and/or other sulfur-containing compounds from a natural gas stream. A co-current contacting system is located in-line within a pipe and receives the natural gas stream and a liquid scavenger stream. The co-current contacting system includes a co-current contactor including a droplet generator and a mass transfer section. The droplet generator generates droplets from the liquid scavenger stream and disperses the droplets into the natural gas stream. The mass transfer section provides a mixed, two-phase flow having a vapor phase and a liquid phase. The liquid phase includes the liquid scavenger stream with H2S, mercaptans, and/or other sulfur-containing compounds absorbed from the natural gas stream, and the vapor phase includes the natural gas stream. A separation system separates the vapor phase from the liquid phase.
摘要:
Systems and methods for dehydrating a natural gas stream are provided herein. The system includes a lean solvent feed system, including a line from a topsides facility, wherein the line is configured to divide a lean solvent stream to feed lean solvent to each of a number of co-current contacting systems in parallel. The co-current contacting systems are placed in series along a wet natural gas stream, wherein each of the co-current contacting systems is configured to contact the lean solvent stream with the wet natural gas stream to adsorb at least a portion of the water from the wet natural gas stream to form a dry natural gas stream. A rich solvent return system includes a line to combine rich solvent from each of the plurality of co-current contacting systems and return a rich solvent stream to the topsides facility.