Abstract:
Disclosed is an apparatus for measuring a fluorescence lifetime. The apparatus for measuring the fluorescence lifetime comprises an excitation light generator that generates excitation light to be irradiated on a sample including fluorescence molecules; a fluorescence photon collecting unit that collects a plurality of fluorescence photons generated by irradiating the excitation light on the sample; a light sensor that converts the collected fluorescence photons into a fluorescence electrical signal; and a fluorescence lifetime signal processor that determines the fluorescence lifetime by calculating the average time of the fluorescence electrical signal with respect to a predetermined apparatus delay time. According to the above configuration, the present invention can accurately and precisely measure a fluorescence lifetime in a short measurement time by easy calculation.
Abstract:
The present invention relates to an apparatus for measuring a residual stress of an optical fiber. More particularly, the present invention relates to an apparatus for measuring residual stress of an optical fiber which is provided with a variable polarizer of which rotation is unnecessary instead of a rotary analyzer to measure the residual stress in high resolution and at high speed.There is provided an apparatus for measuring a residual stress of an optical fiber including a light generation unit that generates light; a lens unit that converts the generated light into collimated light; a polarization unit including variable polarization devices that divide the collimated light into two perpendicularly polarized light beams and control phase retardation of the polarized light beams by means of an electrical signal; a measurement unit that allows the divided light beams of two polarization states to penetrate an optical fiber to be measured; and a light detection unit that detects the polarization states of the light beams penetrating the optical fiber.
Abstract:
Disclosed is an apparatus for measuring a residual stress and a photoelastic effect of an optical fiber, which includes: a light source; a rotary type optical diffuser distanced from the light source in a predetermined distance for suppressing the spatial coherence of a light radiated in the light source; an optical condenser for condensing the radiated light passed through the optical diffuser into a spot where the optical fiber is located; a polarizer for polarizing the light passed through the optical condenser into a 45° linear polarized light from an axis of the optical fiber; a polarization analyzer, installed at 90° angle with respect to the polariscope and attached closely with the optical fiber, to prevent the penetration by the background image of the optical fiber; an optical fiber strain unit including a strain sensor for straining the optical fiber on the polarization analyzer toward a longitudinal direction and measuring the strain on the optical fiber; an object lens for magnifying the image of the light penetrated through the optical fiber; and a charge coupled device (CCD) array for measuring the penetration variation of the optical fiber caused from the strain caused by the optical fiber strain unit over the optical fiber.
Abstract:
The present invention relates generally to an image tracking device in an optical communication system, and in particular, to a device and method for measuring the transverse characteristics, including the refractive index or residual stress of an optical fiber or a fiber preform.
Abstract:
Disclosed is an apparatus for measuring a fluorescence lifetime. The apparatus for measuring the fluorescence lifetime comprises an excitation light generator that generates excitation light to be irradiated on a sample including fluorescence molecules; a fluorescence photon collecting unit that collects a plurality of fluorescence photons generated by irradiating the excitation light on the sample; a light sensor that converts the collected fluorescence photons into a fluorescence electrical signal; and a fluorescence lifetime signal processor that determines the fluorescence lifetime by calculating the average time of the fluorescence electrical signal with respect to a predetermined apparatus delay time. According to the above configuration, the present invention can accurately and precisely measure a fluorescence lifetime in a short measurement time by easy calculation.
Abstract:
Disclosed is an apparatus and method for obtaining images using coherent anti-stokes Raman scattering. The apparatus for obtaining images using coherent anti-stokes Raman scattering according to the present invention comprises: a pump light source and a stokes light source that irradiate pump light and stokes light on a sample to generate anti-stokes light having anti-stokes frequency; a reference light source that generates reference light; and an image obtaining unit that obtains the images of the sample using a change in phase of the reference light due to a change in the refractive index of the sample in the vicinity of the anti-stokes frequency. Thereby, the present invention can provide the apparatus for obtaining images using coherent anti-stokes Raman scattering that is not affected by a non-resonant background signal phenomenon, strong resistance against noise even in a weak signal, and has excellent sensitivity and resolution.
Abstract:
The present invention relates to an apparatus for measuring a residual stress of an optical fiber. More particularly, the present invention relates to an apparatus for measuring residual stress of an optical fiber which is provided with a variable polarizer of which rotation is unnecessary instead of a rotary analyzer to measure the residual stress in high resolution and at high speed.There is provided an apparatus for measuring a residual stress of an optical fiber including a light generation unit that generates light; a lens unit that converts the generated light into collimated light; a polarization unit including variable polarization devices that divide the collimated light into two vertically polarized light beams and control phase retardation of the polarized light beams by means of an electrical signal; a measurement unit that allows the divided light beams of two polarization states to penetrate an optical fiber to be measured; and a light detection unit that detects the polarization states of the light beams penetrating the optical fiber.
Abstract:
Disclosed is an apparatus for measuring a residual stress and a photoelastic effect of an optical fiber, which includes: a light source; a rotary type optical diffuser distanced from the light source in a predetermined distance for suppressing the spatial coherence of a light radiated in the light source; an optical condenser for condensing the radiated light passed through the optical diffuser into a spot where the optical fiber is located; a polarizer for polarizing the light passed through the optical condenser into a 45° linear polarized light from an axis of the optical fiber; a polarization analyzer, installed at 90° angle with respect to the polariscope and attached closely with the optical fiber, to prevent the penetration by the background image of the optical fiber; an optical fiber strain unit including a strain sensor for straining the optical fiber on the polarization analyzer toward a longitudinal direction and measuring the strain on the optical fiber; an object lens for magnifying the image of the light penetrated through the optical fiber; and a charge coupled device(CCD) array for measuring the penetration variation of the optical fiber caused from the strain caused by the optical fiber strain unit over the optical fiber.
Abstract:
An optical phase microscope using rotating-¼ wavelength plate with pinhole in the center position and Fourier transformed lens is provided. The optical phase microscope comprises an optical image generator that acquires images for a specimen to be observed, an object plane onto which light beams of the images acquired from the optical image generator are projected, a first transform lens that performs primary Fourier transformation on the light beams passing through the object plane, a ¼ wavelength plate with pinhole at the center position that is positioned to be spaced by a focal distance of the first transform lens from the first transform lens, a secondary transform lens that performs secondary Fourier transformation on the light beams passing through the ¼ wavelength plate, and a phase image generator including a photo detector on which the images of the light beams subjected to the secondary Fourier transformation is focused.
Abstract:
The present invention relates to a polariscopic phase microscope that can precisely observe a specimen, and more specifically, to a polariscopic phase microscope that can observe a structure and change of a physiological cell by using a phase contrast of light passing through components of the physiological cell. There is provided a polariscopic phase microscope according to the present invention comprising: an optical image generator that acquires images for a specimen to be observed; an object plane onto which light beams of the images acquired from the optical image generator are projected; a first transform lens that performs primary Fourier transformation on the light beams passing through the object plane; a λ/4 wavelength plate that is positioned to be spaced by a focal distance of the first transform lens from the first transform lens; a secondary transform lens that performs secondary Fourier transformation on the light beams passing through the λ/4 wavelength plate; and a phase image generator including a photo detector on which the images of the light beams subjected to the secondary Fourier transformation is focused.The present invention has an effect that can observe the structure and motion of the physiological cell by acquiring the quantitative phase information of the biological specimen such as the physiological cell.