Abstract:
A system for injecting from an injector into a duct of an engine system is provided. The system may include a first flange on a duct connection side, a second flange on an injector connection side, a stand-off separating the first flange from the second flange to form an air gap therebetween, and a seal offset from at least one of the first and the second flanges and located within the airgap and between the first flange and the second flange.
Abstract:
Various methods are provided for notifying a vehicle operator of various parameters based on an exhaust fluid level sensor of an exhaust fluid storage tank. In one example, the parameter is a consumption rate of the exhaust fluid. In another example, the parameter is an amount of fluid to be added to the exhaust fluid storage tank.
Abstract:
A system for injecting from an injector into a duct of an engine system is provided. The system may include a first flange on a duct connection side, a second flange on an injector connection side, a stand-off separating the first flange from the second flange to form an air gap therebetween, and a seal offset from at least one of the first and the second flanges and located within the airgap and between the first flange and the second flange.
Abstract:
A system for injecting from an injector into a duct of an engine system is provided. The system may include a first flange on a duct connection side, a second flange on an injector connection side, a stand-off separating the first flange from the second flange to form an air gap therebetween, and a seal offset from at least one of the first and the second flanges and located within the airgap and between the first flange and the second flange.
Abstract:
Modification of reductant (e.g., diesel exhaust fluid, DEF) tank location, for example during vehicle up-fitting may result in less than optimal operation of the DEF system due to inaccurate DEF system calibration. In one example approach, the above issue can be at least partially addressed by adjusting control system parameters for system control and diagnostics based on an input indicative of, or any modification to, the DEF tank location. In this way, DEF tank location flexibility is maintained, while also maintaining emission control and diagnostic accuracy.
Abstract:
A system for injecting from an injector into a duct of an engine system is provided. The system may include a first flange on a duct connection side, a second flange on an injector connection side, a stand-off separating the first flange from the second flange to form an air gap therebetween, and a seal offset from at least one of the first and the second flanges and located within the airgap and between the first flange and the second flange.
Abstract:
Modification of reductant (e.g., diesel exhaust fluid, DEF) tank location, for example during vehicle up-fitting may result in less than optimal operation of the DEF system due to inaccurate DEF system calibration. In one example approach, the above issue can be at least partially addressed by adjusting control system parameters for system control and diagnostics based on an input indicative of, or any modification to, the DEF tank location. In this way, DEF tank location flexibility is maintained, while also maintaining emission control and diagnostic accuracy.
Abstract:
Various methods are provided for notifying a vehicle operator of various parameters based on an exhaust fluid level sensor of an exhaust fluid storage tank. In one example, the parameter is a consumption rate of the exhaust fluid. In another example, the parameter is an amount of fluid to be added to the exhaust fluid storage tank.
Abstract:
A system for injecting from an injector into a duct of an engine system is provided. The system may include a first flange on a duct connection side, a second flange on an injector connection side, a stand-off separating the first flange from the second flange to form an air gap therebetween, and a seal offset from at least one of the first and the second flanges and located within the airgap and between the first flange and the second flange.
Abstract:
A system comprises a fuel system for delivering fuel to an engine for combustion and a reductant storage system for delivering reductant to the exhaust stream for an SCR catalyst for NOx reduction. The fuel system further comprises a water separator for separating water-based fluid from fuel in the fuel tank, and a separation reservoir to collect the separated water-based fluid. Based on readings of a water-in-fuel sensor positioned within the reservoir, a type of degradation (e.g., water build-up, high-water-content fuel, mis-filling of the reductant, etc.) may be determined and indicated.