Abstract:
A sealed, implantable, encapsulation device (20) for diffusing a biologically active product or function to an individual which includes a substantially non-porous fitting (32) including an inner surface (33) defining an access port (34). A permselective, porous, membrane (21), having an interior surface (22), cooperates with the fitting inner surface (33) to form a storage cavity (23) therebetween. The membrane interior surface (22) is in substantially cell-tight dry sealing engagement with fitting (32) to seal cavity (23). Living cells (24) are disposed in the cavity (23) which are capable of secreting the biologically active product to an individual. The membrane (21) is of a material capable of permitting the passage of substances between the individual and cells required to provide the biological product or function. A plug member (35) is positioned in the access port (34) and seated in cell-tight sealing engagement with the fitting inner surface (33). A method for sealing the implantable encapsulation device (20) is also provided.
Abstract:
Microporous macrocapsules are disclosed which are useful as implantation devices for cell therapy. The macrocapsule comprises living cells that secrete biological substance that are therapeutically useful and that are released from the macrocapsule to the site of implantation. The capsules can have selected permeability characteristics based upon their particular usage and desired viral retentivity characteristics.
Abstract:
This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
Abstract:
Methods and compositions are provided for controlling cell distribution within an implantable bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the bioartificial organ with extracellular matrix molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination. The bioartificial organ typically has a semipermeable membrane encapsulating a cell-containing core, and is preferably immunoisolatory. Cells can be grown on microcarriers and then loaded into the bioartificial organ. The microcarriers may be coated with an extracellular matrix component such as collagen to cause decreased cell proliferation or increased cell differentiation. Microcarriers containing cells can be suspended in a proliferation inhibiting hydrogel matrix prior to encapsulation.
Abstract:
A biocompatible capsule for containing cells for implantation is prepared containing an inner support that provides tensile strength to the capsule. The capsule may be a tubular semipermeable membrane such as a hollow fiber membrane having both ends sealed. A rod shaped inner support extends through the lumen and ends of the rod are attached to sealed ends of the fiber. Prior to sealing one fiber end, cells are introduced into the lumen. Cells within the capsule may be suspended in a liquid medium or immobilized in a hydrogel or extracellular matrix material, and biologically active molecules can be delivered from the capsule to surroundings or from the surroundings into the capsule. The inner support may have external features such as flutes or a roughened or irregularly-shaped surface, and may be coated with cell-adhesive substance or a cell-viability-enhancing substance. The inner support may be a hollow tube having two channels, one communicating with a filling port that permits injecting cells through the support into the capsule and the other communicating with another port that allows gas to escape through the support as cells are introduced. Anti-inflammatory agents can be incorporated into the capsule membrane to reduce immune response, and angiogenic factors and cell growth factors may be used to stimulate cell culture. Post-coating of capsule can be used to provide a protective barrier against immunogens. A tether for capsule retrieval can be formed integral with the inner support.
Abstract:
This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination. A particular embodiment is directed to derivatizing or adsorbing polyethylene oxide-poly(dimethylsiloxane) copolymer (PEO-PDMS) onto a surface within the bioartificial organ to inhibit cellular attachment.
Abstract:
A sealed, implantable, encapsulation device (20) for diffusing a biologically active product or function to an individual which includes a substantially non-porous fitting (32) including an inner surface (33) defining an access port (34). A permselective, porous, membrane (21), having an interior surface (22), cooperates with the fitting inner surface (33) to form a storage cavity (23) therebetween. The membrane interior surface (22) is in substantially cell-tight dry sealing engagement with fitting (32) to seal cavity (23). Living cells (24) are disposed in the cavity (23) which are capable of secreting the biologically active product to an individual. The membrane (21) is of a material capable of permitting the passage of substances between the individual and cells required to provide the biological product or function. A plug member (35) is positioned in the access port (34) and seated in cell-tight sealing engagement with the fitting inner surface (33). A method for sealing the implantable encapsulation device (20) is also provided.
Abstract:
An apparatus to monitor current density in the application of medicament to a treatment site of a mammalian user of a electrokinetic device including: an applicator cartridge including an active electrode, a matrix carrying a medicament or a medicament and an electrically conductive carrier; a device including an electrical power source connectable to the active electrode, a counter electrode, and an electronic circuit configured to control the application of electrical current through the active electrode to establish a conductive path extending from the power source, through the active electrode, matrix, the treatment site, the user and the counter electrode electrically connected to the power source, and an array of contacts monitoring current density flowing through the matrix and to the treatment site, wherein the array of sensors are arranged monitor the current density at various locations of the matrix and a contact area between the matrix and skin above the treatment site.
Abstract:
A sealed, implantable, encapsulation device (20) for diffusing a biologically active product or function to an individual which includes a substantially non-porous fitting (32) including an inner surface (33) defining an access port (34). A permselective, porous, membrane (21), having an interior surface (22), cooperates with the fitting inner surface (33) to form a storage cavity (23) therebetween. The membrane interior surface (22) is in substantially cell-tight dry sealing engagement with fitting (32) to seal cavity (23). Living cells (24) are disposed in the cavity (23) which are capable of secreting the biologically active product to an individual. The membrane (21) is of a material capable of permitting the passage of substances between the individual and cells required to provide the biological product or function. A plug member (35) is positioned in the access port (34) and seated in cell-tight sealing engagement with the fitting inner surface (33). A method for sealing the implantable encapsulation device (20) is also provided.
Abstract:
This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.