摘要:
A lithographic apparatus includes an illuminator for receiving a beam of EUV radiation from a radiation source apparatus and for conditioning the beam to illuminate a target area of a patterning device, such as a reticle. The reticle forms a patterned radiation beam. A projection system transfers the pattern from said patterning device to a substrate by EUV lithography. Sensors are provided for detecting a residual asymmetry in the conditioned beam as the beam approaches the reticle, particularly in a non-scanning direction. A feedback control signal is generated to adjust a parameter of said radiation source in response to detected asymmetry. The feedback is based on a ratio of intensities measured by two sensors at opposite ends of an illumination slit, and adjusts the timing of laser pulses generating an EUV-emitting plasma.
摘要:
An EUV radiation source in the form of a plasma is focused at a virtual source point so as to pass through an exit aperture of a source collector module in an EUV lithographic apparatus. Plasma position is controlled in three directions, X, Y and Z using monitoring signals. By exploiting the photoacoustic effect, the monitoring is accomplished in a non-intrusive manner using acoustic sensors coupled to material of a cone which surrounds the exit aperture. Different angular positions of the radiation beam can be deduced by discriminating signals from the different sensors on the basis of relative arrival time or phase, and/or by comparing the amplitude/intensity of the signals. A sequencer function can be used to introduce a sequence of deliberate offsets in the beam position. This allows acoustic signals to be generated and detected for measurement purposes, when the beam would otherwise not impinge on the material.
摘要:
A system is used to substantially reduce divergence of a beam traveling between master and power oscillators, for example in a laser beam source. The system comprises the first and second oscillators and a beam conditioning device. The first oscillator is configured to generate a radiation beam. The beam conditioning device is configured to stabilize a position, a direction, a size, or a divergence of the radiation beam to produce a conditioned beam. The second oscillator configured to amplify the conditioned beam to produce an amplified beam.
摘要:
An EUV radiation source includes a fuel supply configured to supply fuel to a plasma formation location. The fuel supply includes a nozzle configured to eject droplets of fuel, and a droplet accelerator configured to accelerate the fuel droplets. The EUV radiation source includes a laser radiation source configured to irradiate the fuel supplied by the fuel supply at the plasma formation location.
摘要:
A laser device includes a seed laser, an amplifier, a detector, and an optical element arranged to direct radiation emitted by the seed laser towards a plasma generation site. The optical element is arranged to direct towards the detector amplified spontaneous emission radiation which has been emitted by the seed laser and has been reflected from a droplet of fuel material. The detector is arranged to trigger generation of a laser radiation pulse by the seed laser when the reflected amplified spontaneous emission radiation is detected.
摘要:
An EUV radiation source includes a fuel supply configured to supply fuel to a plasma formation location. The fuel supply includes a nozzle configured to eject droplets of fuel, and a droplet accelerator configured to accelerate the fuel droplets. The EUV radiation source includes a laser radiation source configured to irradiate the fuel supplied by the fuel supply at the plasma formation location.
摘要:
An EUV radiation source that includes a fuel supply configured to supply fuel to a plasma formation location. The fuel supply includes a reservoir configured to hold fuel at a temperature that is sufficiently high to maintain the fuel in liquid form, and a pressure vessel configured to contain the reservoir, the pressure vessel being at least partially thermally isolated from the reservoir. The EUV radiation source also includes a laser radiation source configured to irradiate fuel supplied by the fuel supply at the plasma formation location.
摘要:
A method and apparatus make use of data representing changes in wavelength of a radiation source to provide control of focal plane position or to provide correction of sensor data. In the first aspect, the wavelength variation data is provided to control systems that control focus by moving apparatus components including, for example, the mask table, the substrate table or optical elements of the projection optical system. In the second aspect, variation data is used in correcting, e.g., focal plane position data measured by an inboard sensor, such as a transmitted image sensor. The two aspects may be combined in a single apparatus or may be used separately.
摘要:
An EUV radiation generation apparatus includes a laser configured to generate pulses of laser radiation, and an optical isolation apparatus that includes a rotatably mounted reflector and a radially positioned reflector. The rotatably mounted reflector and the laser are synchronized such that a reflective surface of the rotatably mounted reflector is in optical communication with the radially positioned reflector when the optical isolation apparatus receives a pulse of laser radiation to allow the pulse of laser radiation to pass to a plasma formation location and cause a radiation emitting plasma to be generated via vaporization of a droplet of fuel material. The rotatably mounted reflector and the laser are further synchronized such that the reflective surface of the rotatably mounted reflector is at least partially optically isolated from the radially positioned reflector when the optical isolation apparatus receives radiation reflected from the plasma formation location.
摘要:
A source configured to generate EUV radiation includes a fuel droplet generator configured to deliver a droplet of fuel to an interaction point, optics configured to deliver fuel vaporizing and exciting radiation to the interaction point to generate a plasma, and a collector arranged to collect EUV radiation emitted by the plasma. The optics are arranged such that in use the fuel vaporizing and exciting radiation is incident upon more than one side of the fuel droplet at the interaction point.