Abstract:
An asymmetrical hub bearing assembly for the wheel of a motor vehicle provides a flanged hub rotatable around an axis of rotation (x), a flange transversal to the axis (x), an outer ring with raceways axially spaced from one another, and two rows of balls, of which the axially outer row has a pitch circle with a diameter greater than that of the axially inner row. The flanged hub includes a tubular portion which protrudes in the axially outer direction beyond the flange and provides a thread for a single central threaded fastener adapted to releasably lock a wheel on the hub.
Abstract:
A bearing and shaft assembly comprises a shaft and at least one bearing, and is provided with at least one strain sensor. An elastic component is provided between the shaft and the at least one bearing, and the elastic component comprises the at least one strain sensor. In one disclosed embodiment, the elastic component forms an integral part with one of the bearing and the shaft.
Abstract:
An asymmetrical hub bearing assembly for the wheel of a motor vehicle provides a flanged hub rotatable around an axis of rotation (x), a flange transversal to the axis (x), an outer ring with raceways axially spaced from one another, and two rows of balls, of which the axially outer row has a pitch circle with a diameter greater than that of the axially inner row. The flanged hub includes a tubular portion which protrudes in the axially outer direction beyond the flange and provides a thread for a single central threaded fastener adapted to releasably lock a wheel on the hub.
Abstract:
A unit (1) for supporting the axle-shafts of go-karts provided with an annular body (12) having a variable perimeter and with a rolling bearing (20), set within the annular body (12) itself with the possibility of oscillation about an axis of adjustment (B) transverse to an axis (B) of rotation of the bearing (20) itself; a tightening system (30) being provided for tightening the support (11) on the bearing (20) and for blocking the bearing (20) itself in an operative position, and being defined by at least two sharp edges (32) (33) (36), fixed with respect to the bearing (20) and set about the axis (B) of rotation for cutting into a softer material of the concave seat (13), preventing any rotation of the bearing (20) about the axis (A) of adjustment in said operative position.
Abstract:
A unit (1) for supporting the axle-shafts of go-karts provided with an annular body (12) having a variable perimeter and with a rolling bearing (20), set within the annular body (12) itself with the possibility of oscillation about an axis of adjustment (B) transverse to an axis (B) of rotation of the bearing (20) itself; a tightening system (30) being provided for tightening the support (11) on the bearing (20) and for blocking the bearing (20) itself in an operative position, and being defined by at least two sharp edges (32) (33) (36), fixed with respect to the bearing (20) and set about the axis (B) of rotation for cutting into a softer material of the concave seat (13), preventing any rotation of the bearing (20) about the axis (A) of adjustment in said operative position.
Abstract:
A bearing and shaft assembly comprises a shaft and at least one bearing, and is provided with at least one strain sensor. An elastic component is provided between the shaft and the at least one bearing, and the elastic component comprises the at least one strain sensor. In one disclosed embodiment, the elastic component forms an integral part with one of the bearing and the shaft.