Abstract:
A density reducing high carbon containing or UHC-steel and particular a superplastic steel, which besides iron and impurities conventionally accompanying steel, contains the following alloy components in wt. %: 0.8 to 2.5% C 3.5 to 15% Al 0.5 to 4% Cr 0.01 to 4% Si up to 4% Ni, Mn, Mo, Nb, Ta, V, and/or W, wherein the steel includes as additional alloy components 0.1 to 0.85 Sn, and 0 to 3% Ti, Be and/or Ga.
Abstract:
The invention relates to an easily cold-workable, in particular easily deep-drawable ultra high strength austenitic lightweight construction steel with an ultimate tensile strength of up to 1100 MPa and with TRIP and TWIP characteristics, as well as its use for motor vehicle body sheetmetal components, structural components used for stiffening, as well as cryogenic containers and pipelines.
Abstract:
The invention relates to an aluminothermic mixture consisting of a finely particulate base portion of iron oxides and aluminum as well as metallic additives, wherein a master alloy, namely a ferrochromium alloy consisting of (in % by weight)C: 0.1 to 20Si: 2 to 40Cr: 5 to 80and iron with impurities resulting from manufacture and, if appropriate, other alloying elements, is added in a quantity of from 5 to 50% by weight, relative to the base portion, as metallic additive.
Abstract:
In a method for making hot strips, a workable lightweight construction steel is used which in particular can easily be deep-drawn cold and includes the main elements Si, Al and Mn, with high tensile strength and good TRIP and/or TWIP characteristics. The mass % are as follows for C 0.04 to
Abstract:
A density reducing high carbon containing or UHC-steel and particular a superplastic steel, which besides iron and impurities conventionally accompanying steel, contains the following alloy components in wt. %: 0.8 to 2.5% C 3.5 to 15% Al 0.5 to 4% Cr 0.01 to 4% Si up to 4% Ni, Mn, Mo, Nb, Ta, V, and/or W, wherein the steel includes as additional alloy components 0.1 to 0.85 Sn, and 0 to 3% Ti, Be and/or Ga.
Abstract:
The present invention relates to high strength, oxidation and wear resistant titanium-silicon base alloy containing: 2.5-12 wt % Si 0-5 wt % Al 0-0.5% B 0-2% Cr 0-1 wt % rare earth metals and/or scandium balance Ti with unavoidable impurities.
Abstract:
In a process for making tools from medium and high alloy steels or stellites by superplastic precision forming a powder metallurgically produced starting material with an equiaxed structure and more than 30% by volume of carbidic and/or boridic precipitated phase of particle size 1 to 0.2 .mu.m is given a matrix grain size of 1 to 3 .mu.m by thermomechanical processing (hot forming) and formed in the superplastic state.
Abstract:
A high-strength steel sheet comprises, by weight, not less than 0.25% and not more than 0.5% of C, not less than 4% and not more than 14% of Mn, not less than 6.5% and not more than 9.5% of Cr, and not less than 0.3% and not more than 3% of Si. The high-strength steel sheet satisfies the following formulas 1 and 2 and mainly consists of austenite, and the high-strength steel sheet has yield strength of not less than 1000 MPa and total elongation of not less than 20%. 12≦2.0Si+5.5Al+Cr+1.5Mo≦25 (1) 13 ≦30C+0.5Mn+0.3Cu+Ni+25N≦17 (2) (Each element symbol in the above formulas indicates the content (weight %) of the element)
Abstract:
The present invention relates to a dimensionally stable oxygen-evolving anode for use in an electrolytic cell for the production of aluminium. The anode comprises of a container made from an alloy comprising aluminium and at least one metal more noble than aluminium; a fluid bath in the bottom of the container having the ability to dissolve aluminium, said fluid having a density that is higher than the density of molten aluminium at the operating temperature of the cell, a pool of molten aluminium floating on top of the fluid bath in the bottom of the container; a refractory layer arranged on the inner sidewalls of the container at least in the area of the pool of molten aluminium, said refractory layer protecting the molten aluminium from contacting the inner sidewalls of the container.
Abstract:
The invention concerns a steel for lightweight construction, consisting of a multiphase structure. In the case of a duplex steel, it consists of mixed ferrite (α) and austenite (γ) crystals. In the case of a triplex steel, it comprises, additioally to said two phases, martensitic (ε) and/or (κ) phases. The volumetric weight of the inventive steel is low as a result of the high proportion of light alloys A1, Si Mn, Mg, Ga and Be. The inventive alloys have a volumetric weight of less than 7b/cm3.
Abstract translation:本发明涉及一种轻质结构钢,由多相结构组成。 在双相钢的情况下,它由混合的铁素体(α)和奥氏体(γ)晶体组成。 在三重钢的情况下,除了所述两相之外,还包括马氏体(ε)和/或(κ)相。 由于轻合金A1,SiMn,Mg,Ga和Be的比例高,本发明钢的体积重量较低。 本发明合金的体积重量小于7b / cm 3。