Abstract:
A motor vehicle headlight comprising an illuminating device (3) which comprises at least one light-emitting diode chip (20). The motor vehicle headlight furthermore has a heat pipe (5) or a thermosiphon (35) with an evaporation region (6) and a condensation region (7), wherein the evaporation region (6) is thermally connected to the illuminating device (3), and the condensation region (7) is connected to a heat sink (8) which outputs heat absorbed at the illuminating device (3) to the surrounding area.
Abstract:
At least one electric component, such as a power semiconductor component, has at least a two-phase cooling device having at least one evaporator. The evaporator has a liquefier with a structured liquefier surface for evaporating a cooling fluid, formed by an electric connecting line making electrical contact with an electric contact face of the component. The connecting line cools the power semiconductor component and a module equipped therewith. Isothermal cooling with a low thermal loading of the power semiconductor component or of the module is possible by virtue of the two-phase cooling device acting as an evaporating bath cooling system. The device is applied in the planar contact-making technology with a large surface by providing an electric component with an electric contact face and producing the electric connecting line to the evaporator surface on the contact face of the component.
Abstract:
A composite material and a base plate made of this composite material for mounting electrical components and for connecting these components to a cooling device is disclosed. In one embodiment, the composite material includes a matrix material and fibers embedded therein. The fibers have in this case an anisotropic, directionally optimized distribution in the matrix material, so that heat occurring in a locally confined area can be effectively distributed and dissipated. The material of the fibers includes SiC, highly graphitized carbon or diamond. The fibers are arranged in the matrix material in various fiber levels, the fibers in the upper fiber levels being oriented predominantly horizontally in relation to a reference area and the fibers in the lower fiber levels being oriented predominantly vertically in relation to the reference area.
Abstract:
A lighting device (1) comprising at least one light source (5), at least one base (7) thermally and electrically operationally connected to the light source (5), and at least one bulb fitting (10, 27) provided for receiving the base (7). The base (7) has at least one first heat transfer surface (15) and the bulb fitting (10, 27) has at least one second heat transfer surface (17) in contact with the first heat transfer surface (15) either directly or by way of a foil (16). At least one device (14, 26, 32, 39) is provided for exerting a predefined press force between the first heat transfer surface (15) and the second heat transfer surface (17).
Abstract:
A lighting device (1) comprising at least one light source (5), at least one base (7) thermally and electrically operationally connected to the light source (5), and at least one bulb fitting (10, 27) provided for receiving the base (7). The base (7) has at least one first heat transfer surface (15) and the bulb fitting (10, 27) has at least one second heat transfer surface (17) in contact with the first heat transfer surface (15) either directly or by way of a foil (16). At least one device (14, 26, 32, 39) is provided for exerting a predefined press force between the first heat transfer surface (15) and the second heat transfer surface (17).
Abstract:
A composite material and a base plate made of this composite material for mounting electrical components and for connecting these components to a cooling device is disclosed. In one embodiment, the composite material includes a matrix material and fibers embedded therein. The fibers have in this case an anisotropic, directionally optimized distribution in the matrix material, so that heat occurring in a locally confined area can be effectively distributed and dissipated. The material of the fibers includes SiC, highly graphitized carbon or diamond. The fibers are arranged in the matrix material in various fiber levels, the fibers in the upper fiber levels being oriented predominantly horizontally in relation to a reference area and the fibers in the lower fiber levels being oriented predominantly vertically in relation to the reference area.