Abstract:
The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Abstract:
The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Abstract:
The present invention provides for the identification and cloning of functional plant centromeres in Arabidopsis. This will permit construction of stably inherited plant artificial chromosomes (PLACs) which can serve as vectors for the construction of transgenic plant and animal cells. In addition, information on the structure and function of these regions will prove valuable in isolating additional centromeric and centromere related genetic elements and polypeptides from other species.
Abstract:
The present invention provides for the identification and cloning of functional plant centromeres in Arabidopsis. This will permit construction of stably inherited plant artificial chromosomes (PLACs) which can serve as vectors for the construction of transgenic plant and animal cells. In addition, information on the structure and function of these regions will prove valuable in isolating additional centromeric and centromere related genetic elements and polypeptides from other species.
Abstract:
The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Abstract:
The present invention provides for the identification and cloning of functional plant centromeres in Arabidopsis. This will permit construction of stably inherited plant artificial chromosomes (PLACs) which can serve as vectors for the construction of transgenic plant and animal cells. In addition, information on the structure and function of these regions will prove valuable in isolating additional centromeric and centromere related genetic elements and polypeptides from other species.
Abstract:
The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Abstract:
The invention provides efficient methods for the isolation of centromeres from potentially any organism. The methods may comprise the steps of: a) preparing a first sample of genomic DNA from a selected species; b) obtaining a plurality of methylated nucleic acid segments from the genomic DNA; and c) screening the methylated nucleic acid segments to identify a centromere nucleic acid sequence.
Abstract:
The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Abstract:
The invention is generally related to methods of generating plants transformed with novel autonomous mini-chromosomes. Mini-chromosomes with novel compositions and structures are used to transform plants cells which are in turn used to generate the plant. Methods for generating the plant include methods for delivering the mini-chromosome into plant cell to transform the cell, methods for selecting the transformed cell, and methods for isolating plants transformed with the mini-chromosome. Plants generated in the present invention contain novel genes introduced into their genome by integration into existing chromosomes.