Abstract:
Methods and apparatus for precise substrate cool down control are provided. Apparatus for measuring temperature of substrates may include a cool down plate to support a substrate; a sensor to provide data corresponding to a temperature of the substrate when disposed on the cool down plate; and a computer coupled to the sensor to determine the temperature of the substrate from the sensor data. A method for measuring the temperature of a substrate may include providing a substrate to be cooled to a chamber having a cool down plate disposed therein, a sensor to provide data corresponding to a temperature of the substrate, and a computer coupled to the sensor; sensing a first temperature of the substrate after a predetermined first time interval has elapsed; comparing the first temperature to a predetermined temperature; and determining whether the first temperature is greater than, equal to, or less than the predetermined temperature.
Abstract:
Methods and apparatus for controlling power distribution in a substrate processing system are provided. In some embodiments, a substrate processing system including a process chamber having a substrate support and a processing region disposed above the substrate support; a first conduit disposed above the processing region to provide a portion of a first toroidal path that extends through the first conduit and across the processing region; a second conduit disposed above the processing region to provide a portion of a second toroidal path that extends through the second conduit and across the processing region; an RF generator coupled to the first and second conduits to provide RF energy having a first frequency to each of the first and second conduits; an impedance matching network disposed between the RF generator and the first and second conduits; and a power divider to control the amount of RF energy provided to the first and second conduits from the RF generator.
Abstract:
Methods and apparatus for controlling power distribution in a substrate processing system are provided. In some embodiments, a substrate processing system including a process chamber having a substrate support and a processing region disposed above the substrate support; a first conduit disposed above the processing region to provide a portion of a first toroidal path that extends through the first conduit and across the processing region; a second conduit disposed above the processing region to provide a portion of a second toroidal path that extends through the second conduit and across the processing region; an RF generator coupled to the first and second conduits to provide RF energy having a first frequency to each of the first and second conduits; an impedance matching network disposed between the RF generator and the first and second conduits; and a power divider to control the amount of RF energy provided to the first and second conduits from the RF generator.