摘要:
A metal gate electrode for a field emission device includes a plurality of metal strips. Some of the metal strips are arranged substantially along a first direction, and other metal strips are arranged substantially along a second direction substantially perpendicular to the first direction. The metal strips are connected to each other to define a plurality of rectangular apertures through which electrons can pass.
摘要:
A kind of photosensitive carbon nanotube slurry is disclosed. The photosensitive carbon nanotube slurry includes a first mixture and a second mixture. The first mixture includes carbon nanotubes, conducting particles, and a first organic carrier. The second mixture includes a photo polymerization monomer, a photo initiator, and a second organic carrier. The weight percentage of the first mixture and the second mixture ranges from about 50% to about 80% and about 20% to about 50%, respectively. Methods for making the photosensitive carbon nanotube slurry and methods for making cathode emitters using the photosensitive carbon nanotube slurry are also disclosed.
摘要:
An inkjet ink includes carbon nanotubes, flake graphites, an organic carrier, a binder, a surfactant, a film enhancer and a solvent. A method for making an inkjet ink includes dispersing the plurality of carbon nanotubes in the surfactant solvent to form a first mixture, dispersing the plurality of flake graphites in the organic carrier solvent to form a second mixture, adding the film enhancer into the second mixture to form a third mixture, and mixing the first mixture and the third mixture.
摘要:
A field emission cathode device includes a substrate, a metal plate attached to the substrate, at least one electron emitter electrical connected with the metal plate, and a filler. The metal plate defines at least one through hole extending through the metal plate. The at least one electron emitter is fixed between the substrate and the metal plate and extends through the at least one through hole. The filler is filled into the at least one through hole to fix the at least one electron emitter.
摘要:
A field emission cathode device includes an insulative substrate, a number of cathode electrodes, and a number of liner electron emission units. The insulative substrate has a top surface and a bottom surface. The insulative substrate defines a number of openings. The cathode electrodes are located on the bottom surface. Each of the linear electron emission units has a first portion secured between the insulative substrate and one corresponding cathode electrode and a second portion received in one corresponding opening.
摘要:
A carbon nanotube slurry consists of carbon nanotubes, glass powder, and organic carrier. The field emission device includes an insulative substrate, a cathode conductive layer, and an electron emission layer. The cathode conductive layer is located on a surface of the insulative substrate. The electron emission layer is located on a surface of the cathode conductive layer. The electron emission layer consists of a glass layer and a plurality of carbon nanotubes electrically connected to the cathode conductive layer.
摘要:
A method for making a field emission cathode device is presented. First, an insulative substrate is provided. The insulative substrate includes a first surface and a second surface opposite to the first surface. The insulative substrate defines a number of openings extending through from the first surface to the second surface. Second, at least one electron emitter is provided corresponding to each of the number of openings. The electron emitter includes a fixing portion and an electron emission portion connecting to the fixing portion. The fixing portion is fixed on the first surface, and the electron emission portion extends from the fixing portion into the number of openings. Third, a number of cathode electrodes are formed on the first surface to fix the fixing portion between the insulative substrate and the cathode electrodes.
摘要:
A field emission cathode device includes an insulative substrate, a number of cathode electrodes, and a number of liner electron emission units. The insulative substrate has a top surface and a bottom surface. The insulative substrate defines a number of openings. The cathode electrodes are located on the bottom surface. Each of the linear electron emission units has a first portion secured between the insulative substrate and one corresponding cathode electrode and a second portion received in one corresponding opening.
摘要:
A method for making a field emission cathode device is presented. First, an insulative substrate is provided. The insulative substrate includes a first surface and a second surface opposite to the first surface. The insulative substrate defines a number of openings extending through from the first surface to the second surface. Second, at least one electron emitter is provided corresponding to each of the number of openings. The electron emitter includes a fixing portion and an electron emission portion connecting to the fixing portion. The fixing portion is fixed on the first surface, and the electron emission portion extends from the fixing portion into the number of openings. Third, a number of cathode electrodes are formed on the first surface to fix the fixing portion between the insulative substrate and the cathode electrodes.
摘要:
The present disclosure provides a field emission electronic device. The field emission electronic device includes an insulating substrate, a first electrical conductor located on surface of the insulating substrate, a number of electron emitters connected to the first electrical conductor, a second electrical conductor spaced apart from and insulated from the first electrical conductor. Each of the number of electron emitters includes at least one electron emitter. Each of the electron emitters includes a carbon nanotube pipe. The carbon nanotube pipe includes a first end, a second end and a main body connecting the first end and the second end. The first end of the carbon nanotube pipe is electrically connected to one of the plurality of row electrodes. The second end of the carbon nanotube pipe has a number of carbon nanotube peaks.