Abstract:
The invention relates to copper(I) complexes of the formula A wherein X=Cl, Br or I (independently of one another); N*∩E=a bidentate ligand, wherein E=a phosphinyl group including a phosphorus atom or an arsenyl group including an arsenic atom, wherein the phosphinyl group or the arsenyl group is combined with R in the form of R2E (where R=alkyl, aryl, alkoxy, or phenoxy; N*=imine function which is part of an aromatic group selected from pyridyl, pyrimidyl, pyridazinyl, triazinyl, oxazolyl, thiazolyl and imidazolyl, the aromatic group optionally having at least one substituent to increase the solubility of the copper(I) complex in an organic solvent; and ∩=at least one carbon atom which is likewise part of the aromatic group. The carbon atom is located directly adjacent both to the imine nitrogen atom, coordinating to Cu in the case of a bridging ligand and to the phosphorus or arsenic atom. The invention also relates to the use of the copper(I) complexes in optoelectronic assemblies, especially in Organic Light Emitting Diodes (OLEDs).
Abstract translation:本发明涉及式A的铜(I)络合物,其中X = Cl,Br或I(彼此独立); N *∩E=双齿配体,其中E =包括磷原子或包含砷原子的砷基的氧膦基,其中所述氧膦基或所述亚砷基与R 2的形式R(其中R =烷基 ,芳基,烷氧基或苯氧基; N * =亚胺官能团,其是选自吡啶基,嘧啶基,哒嗪基,三嗪基,恶唑基,噻唑基和咪唑基的芳族基团的一部分,芳族基团任选具有至少一个取代基以增加溶解度 在有机溶剂中的铜(I)络合物;∩=至少一个同样是芳族基团一部分的碳原子,碳原子位于与亚胺氮原子直接相邻的位置,在与 桥联配体和磷或砷原子。本发明还涉及铜(I)配合物在光电组件中的应用,特别是在有机发光二极管(OLED)中。
Abstract:
The invention relates to a composition comprising an organic emitter molecule, this molecule having a ΔE(S1−T1) value between the lowermost excited singlet state (S1) and the triplet state beneath it (T1) of less than 2500 cm−1, and an optically inert atom or molecule for reducing the inter-system crossing time constant of the organic molecule to less than 10−6 s.
Abstract:
The invention relates to the use of a platinum-dicyano-bisisocyanide complex cluster, having a small ΔE distance, in particular between 500 cm−1 and 3000 cm−1, between the lowest triplet state and the overlying singlet state that is populated by means of thermal repopulation from the triplet, in an organic-electronic device for emission of blue light and for absorption in the ultraviolet and blue spectral range. The invention also relates to the use of the singlet harvesting method. Furthermore, the invention relates to the use of the high degrees of absorption of such platinum-dicyano-bisisocyanide complex clusters.
Abstract:
The invention relates to copper(I) complexes of the formula (A) with X═Cl, Br or I (independently of one another) N*∩E=bidentate ligand, with E=phosphinyl/arsenyl radical of the form R2E (where R=alkyl, aryl, alkoxy, phenoxy, amide); N*=imine function. Which is part of an aromatic group selected from pyridyl, pyrimidyl, pyridazinyl, triazinyl, oxazolyl, thiazolyl and imidazolyl, the aromatic group optionally having at least one substituent for increasing the solubility of the copper(I) complex in an organic solvent, and “∩”=at least one carbon atom, which is likewise part of the aromatic group, the carbon atom being located both directly adjacent to the imine nitrogen atom and to the phosphorus or arsenic atom, and also to the use thereof in optoelectronic assemblies, especially in OLEDs.
Abstract translation:本发明涉及式(A)与X = Cl,Br或I(彼此独立)N(∩E)=二齿配体的式(A)的铜(I)络合物,其中E = R2E形式的氧化基/ R =烷基,芳基,烷氧基,苯氧基,酰胺); N * =亚胺功能。 哪个是选自吡啶基,嘧啶基,哒嗪基,三嗪基,恶唑基,噻唑基和咪唑基的芳族基团的一部分,芳族基团任选具有至少一个用于增加铜(I)络合物在有机溶剂中的溶解度的取代基, ∩“=至少一个碳原子,其同样是芳族基团的一部分,碳原子位于与亚胺氮原子直接相邻的位置以及磷或砷原子,以及其在光电子组件中的用途,特别是 在OLED中。
Abstract:
The present invention relates to compounds which can be used in particular as ligands, to complexes and also to light-emitting devices and in particular to organic light-emitting devices (OLEDs). In particular, the invention relates to the use of luminescent oxazole-chelate metal complexes as emitters in such devices.
Abstract:
The invention relates to the use of a multinuclear metal or transition metal complex in an organic electronic device, said complex having a small ΔE spacing, particularly between 50 cm−1 and 2000 cm−1, between the lowest triplet state and the singlet state that is higher and is achieved by thermal backfilling from the triplet. The invention further relates to the use of the strong absorptions of such multinuclear metal complexes, particularly in OSCs.
Abstract:
The invention relates to neutral mononuclear copper (I) complexes for emitting light and with a structure according to formula (A) in which: M represents: Cu(I); L∩L represents: a single, negatively charged, bidentate ligand; N∩N represents: a diimine ligand (substituted with R and FG), in particular a substituted 2,2′-bipyridine derivative (bpy) or a substituted 1,10-phenanthroline derivative (phen); R represents: at least one sterically demanding substituent for preventing the planarization of the complex in the excited state; FG=functional group, and represents: at least one second substituent for increasing solubility in organic solvents. The substituent can also be used for electron transport or alternatively for hole transport, said functional group being bound to the diimine ligands either directly or by means of suitable bridges; and the copper (I) complex: having a ΔE(S1−T1) value of less than 2500 cm−1 between the lowest excited singlet state (S1) and the triplet state (T1) which lies below; having an emission lifespan of at most 20 μs; having an emission quantum yield of greater than 40%, and a solubility of at least 1 g/L in organic solvents, in particular polar organic hydrocarbons such as acetone, methyl ethyl ketone, benzene, toluene, chlorobenzene, dichlorobenzene, dichloromethane, chloroform, dichloroethane, tetrachloroethylene, alcohols, acetonitrile or water.
Abstract:
The invention describes electronic devices comprising a metal complex compound having at least one ligand contain-ing an N donor and a P donor having the formula (I), in which the carbons C1 and C2 are part of an aromatic or non-aromatic ring system F1, P and N are phosphorus and nitrogen, where the nitrogen is in sp2-hybridised form, the radicals R3 and R4 are, indepen-dently of one another, hydrogen or an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cyclo-alkynyl, alkylcycloalkyl, heteroalkyl, heterocycloalkyl, heteroalkylcycloalkyl, aryl, hetero-aryl, aralkyl or heteroaralkyl radical having up to 40 C atoms, and R1 and R2 are, independently of one another, an atom or radical from the group comprising hydrogen, halogen, R, RO—, RS—, RCO—, RCOO—, RNH—, R2N—, RCONR— and —Si(R)X(OR)3-X, where R=an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, alkylcycloalkyl, heteroalkyl, hetero-cycloalkyl, hetero-alkyl-cycloalkyl, aryl, heteroaryl, aralkyl or heteroaralkyl radical having up to 40 C atoms and X=1, 2 or 3. The invention furthermore describes a process for the production of an electronic device of this type and processes for the generation of light or blue emission using a metal complex compound of this type.
Abstract:
The invention describes electronic devices comprising a metal complex compound having at least one anionic ligand containing two P donors, having the formula (I), in which R1 to R4 are, independently of one another, an atom or radical from the group comprising hydrogen, a halogen, R, RO—, RS—, RCO—, RCOO—, RNH—, R2N—, RCONR— and —Si(R)X(OR)3-X, where R=a C1-C40-hydrocarbon and X=1, 2 or 3, and E is a bridge atom from the group with carbon or boron, where an atom or radical from the group with hydrogen, halogen, —CN, R, RO—, RS—, RCO—, RCOO—, RNH—, R2N—, RCONR— and —Si(R)X(OR)3-X, where R=the C1-C40-hydrocarbon and X=1, 2 or 3, is optionally bonded to the carbon, and two radicals from the group with halogen, R, RO—, RS—, RCO—, RCOO—, RNH—, R2N—, RCONR— and —Si(R)X(OR)3-X, where R=the C1-C40-hydrocarbon and X=1, 2 or 3, are optionally bonded to the boron. The invention furthermore describes a process for the production of an electronic device of this type and processes for the generation of light or blue emission using a metal complex compound of this type.
Abstract:
The invention relates to the use of a platinum-dicyano-bisisocyanide complex cluster, having a small ΔE distance, in particular between 500 cm−1 and 3000 cm−1, between the lowest triplet state and the overlying singlet state that is populated by means of thermal repopulation from the triplet, in an organic-electronic device for emission of blue light and for absorption in the ultraviolet and blue spectral range. The invention also relates to the use of the singlet harvesting method. Furthermore, the invention relates to the use of the high degrees of absorption of such platinum-dicyano-bisisocyanide complex clusters.