摘要:
The present invention relates to a method of manufacturing a bearing component, in which a visible identification mark is created on a surface of the component using a laser beam. The laser marking creates an oxidized layer on the component surface and, in an underlying region, alters the microstructure of the bearing steel from which the component is made. According to the invention, the mark is then rendered visually undetectable with the naked eye, by removing at least the oxidized surface layer of the mark. This exposes the altered microstructure, which is revealable by applying an etchant to the visually undetectable mark.
摘要:
The present invention relates to a method of manufacturing a bearing component, in which a visually undetectable identification mark is created on a surface of the component by means of laser marking performed in a protective gas environment. The protective gas environment prevents the formation of a visible oxide layer, while the temperatures induced at the component surface and below the component surface, due to the laser marking, are sufficient to alter the microstructure of the bearing steel from which the component is made. The altered microstructure is revealable by applying an etchant to the visually undetectable mark, thereby allowing authentication of the bearing component.
摘要:
The present invention relates to a method of manufacturing a bearing component, in which a visually undetectable identification mark is created on a surface of the component by means of laser marking performed in a protective gas environment. The protective gas environment prevents the formation of a visible oxide layer, while the temperatures induced at the component surface and below the component surface, due to the laser marking, are sufficient to alter the microstructure of the bearing steel from which the component is made. The altered microstructure is revealable by applying an etchant to the visually undetectable mark, thereby allowing authentication of the bearing component.
摘要:
The mechanical load on a rolling element bearing is determined from the deformation of the rolling element bearing. The local deformation caused by the rolling contact forces is used to determine an average contribution to the mechanical load in order to average out the effect on the deformation as a result of the spread in diameter of the rolling elements of the bearing. The global deformation of the rolling element bearing is determined to calculate a dynamic contribution to the mechanical load. The dynamic contribution takes into account the variations of the mechanical load on the relevant time-scales that have been omitted from the average contribution as a result of the averaging operation. The total mechanical load is the sum of the average contribution and the dynamic contribution.
摘要:
An apparatus (1000) comprises a first physical component (1004), a second physical component (1006) and a sensor arrangement. The first and second physical components move relative to one another in operational use of the apparatus. The sensor arrangement senses a relative kinematic state of the first and second physical components. The sensor arrangement comprises a magnet (110) and a sensor (112). The sensor senses a property of a magnetic field of the magnet at a location of the sensor. The sensor is mounted stationary with respect to the first physical component. The sensor arrangement comprises a target object (114), mounted stationary with respect to the second physical component. The target object is configured for affecting an attribute of the property in dependence on the relative kinematic state. According to the invention target object (114) comprises a plurality of interlocking, segments.
摘要:
An accelerometer (102) senses acceleration in a specific direction through the voltages produced by multiple piezoelectric sensors (114, 302, 304) electrically arranged in parallel in response to the acceleration. The main axes of sensitivity of the piezoelectric sensors are aligned and point in the same direction. The parallel arrangement enables to control the thermal noise level of the output signal of the accelerometer that originates in a bias resistor (116) connected in parallel to the parallel arrangement of the piezoelectric sensors.
摘要:
The present invention relates to a method of manufacturing a bearing component, in which a visible identification mark is created on a surface of the component using a laser beam. The laser marking creates an oxidised layer on the component surface and, in an underlying region, alters the microstructure of the bearing steel from which the component is made. According to the invention, the mark is then rendered visually undetectable with the naked eye, by removing at least the oxidised surface layer of the mark. This exposes the altered microstructure, which is revealable by applying an etchant to the visually undetectable mark.
摘要:
A combination of a bearing component and a sensor, wherein: (a) at least a portion of the bearing component is formed from a bearing steel; (b) the sensor comprises a sensor element and a support therefor; (c) at least a portion of the support is formed from a low carbon steel comprising no more than 0.2 wt. % carbon or from nickel or an alloy thereof or from titanium or an alloy thereof; and (d) the bearing component and the support are welded or brazed to one another via said respective portions.
摘要:
The present invention defines a bearing unit comprising a bearing provided with one or more strain sensors, where the bearing comprises an inner ring and an outer ring, and where the one or more strain sensors (10) comprises a sensing element (14) integrated on a support member (12). According to the invention, the support member is a thin flat plate made of a metal material and is attached to a surface (5) of the bearing only by means of a first weld seam (21) and a second weld seam (22) located at first and second lateral ends of the support member. The present invention also defines a method of attaching the strain sensor (10) to the bearing surface (5).
摘要:
A device for attachment to a motor vehicle wheel includes an arrangement which, during movement or driving of the motor vehicle, detects vibrations which occur, evaluates the vibrations for an incipient fault state of a wheel bearing of the vehicle wheel, and delivers a signal when the monitoring or evaluation yields or indicates the incipient fault state.