摘要:
A method and apparatus is provided for measuring pressure in a pressure containing vessel with a non-intrusive, metal-embedded fiber optic pressure sensor. The pressure containing vessel may, for example, be the combustion chamber of an internal combustion engine. A Fabry-Perot Interferometer is arranged in a terminated, single mode fiber to function as a strain gauge. The fiber Fabry-Perot Interferometer (FFPI) is embedded in a metal part which may be disposed in a wall of the pressure containing vessel. The metal part and FFPI experience a longitudinal strain in response to the pressure in the vessel. In another aspect of the invention, a non-intrusive fiber containing the FFPI may be embedded along the axis of a metal bolt. The bolt may be used to attach a part or structure, which is directly exposed to the pressure, to the wall of the vessel. Consequently, the bolt and FFPI experience a longitudinal strain in response to the pressure on the part or structure. In this aspect, the part or structure exposed to the pressure may be, for example, a fuel injection valve that is attached by the bolt to a cylinder head of an internal combustion engine.
摘要:
Apparatus for sensing intrusion into a predefined perimeter comprises means for producing a coherent pulsed light, which is injected into an optical sensing fiber having a first predetermined length and positioned along the predefined perimeter. A backscattered light in response to receiving the coherent light pulses is produced and coupled into an optical receiving fiber. The backscattered light is detected by a photodetector and a signal indicative of the backscattered light is produced. An intrusion is detectable from the produced signal as indicated by a change in the backscattered light. To increase the sensitivity of the apparatus, a reference fiber and an interferometer may also be employed.
摘要:
An optical fiber coil rotation rate sensor including provision for equal intensity dual inputs to its fiber coil to allow the device to operate at the quadrature point and circuitry to continuously adjust the phase in order to maintain operation at that quadrature point regardless of the rotation rate. The system includes an optical fiber coil for counterpropagating light beams therethrough and an input circuit for providing a first and second equal intensity light beams for counterpropagation through the fiber coil. The input circuit comprises a laser light source, a beamsplitter for splitting light from the laser source into two equal intensity beams, first and second elongate fiber waveguides for directing the equal intensity beams to the fiber coil for counterpropagation and including two elongate coextensive close-proximity sections for light beam coupling between the fiber waveguides, and a phase shifter circuit for automatically nulling the phase-shift in the beams returning from the coil. The phase-shift required to null the returning beams is proportional to the fiber coil rotation rate.
摘要:
In a system for transmitting intensity modulated light waves (20) over an optical fiber (18), an optical data transmission apparatus (10) includes a cw laser (12) conformed to emit light at substantially a single frequency. A phase modulator (14) is connected in series with the cw laser (12), wherein the phase modulator (14) is conformed to cause the light from the cw laser (12) to vary in substantially a quadratic manner as a function of time during a time interval T. An intensity modulator (16) is connected in series with the phase modulator (14), wherein the intensity modulator (16) is conformed to transmit or block the light from the phase modulator (14) in accordance with an intensity modulation scheme for transmitting binary data, such that the transmitted light consists of pulses (22) of temporal width T during which the phase of the light varies in substantially a quadratic manner as a function of time.
摘要:
A two-port guided wave tunable filter in a birefringent electrooptic and/or acoustooptic substrate material includes two 3-port, symmetric Y-branch beam splitters connected by two waveguide sections in which phase-matched polarization coupling occurs, with an input port and an output port. The optical path difference between the beam splitters is half an optical wavelength, and the polarization coupling regions between the beam splitters are relatively displaced by an odd integral multiple of half the spatial period of the perturbation responsible for the coupling. In one embodiment, an electrooptic tunable filter, the polarization coupling in the waveguides is caused by a spatially periodic strain-inducing film and tuning results from an applied electric field. In another embodiment, an acoustooptic tunable filter, polarization coupling results from a surface acoustic wave and tuning is accomplished by changing the acoustic frequency. Alternatively, four port electrooptic and acoustooptic tunable filters are formed by replacing the 3-port beam splitters with 4-port directional couplers, where in each of the directional couplers the splitting ratio for TE input polarization plus the splitting ratio for TM input polarization is substantially equal to one.
摘要:
A multireflector fiber optic filter apparatus, wherein the transmittance and reflectance spectra are periodic in frequency, the apparatus comprising an etalon with N equally spaced reflectors wherein the transmittance and reflectance spectra of said etalon are periodic in optical frequency with a period given by the formula: &Dgr;&ngr;FSR=c/(2ngL), where c=the free space speed of light; ng=the group refractive index for the light propagating in the medium between the reflectors, L=separation between said reflectors, and N is an integer=3,4,5, . . . In a further aspect, an optical circulator is connected to the etalon and an optical fiber is connected to the optical circulator for reflected output.
摘要翻译:一种多反射器光纤滤波器装置,其中透射率和反射光谱在频率上是周期性的,该装置包括具有N个等间隔反射器的标准具,其中所述标准具的透射率和反射光谱在光学频率上是周期性的,具有由下式给出的周期: DeltanuFSR = c /(2ngL),其中c =光的自由空间速度; ng =在反射器之间介质中传播的光的组折射率,L =所述反射器之间的间隔,N是整数= 3,4,5。 。 。 在另一方面,光环行器连接到标准具,并且光纤连接到光循环器以用于反射输出。
摘要:
Apparatus and method (10, 50) for determining the value of a measurand measured by a fiber optic interferometer sensor (24, 72, 110) is provided. The apparatus includes a light source (16, 58, 102) emitting a light having a periodically modulated frequency which is injected into the interferometric sensor. A modulation cycle is initiated by the microcontroller's (12, 56, 116) generation of a trigger signal. A counter (42, 86) begins counting in response to the trigger signal. A first photodetector (20, 66) is coupled to the light source (16, 58, 102) and produces a first electrical signal proportional to the light. A second photodetector (36, 76, 114) is coupled to the fiber optic interferometer sensor (24, 72, 110) and produces a second electrical signal proportional to the light reflected by the sensor or passed through the sensor and affected by the measurand. A comparator (40, 82, 116) compares the second electrical signal with the first electrical signal and detects a crossing of the first and second electrical signals. The counter (42, 86) stops counting in response to a detected signal crossing. The microcontroller (12, 56, 116) then computes a measurand value from the count value for each modulation cycle.
摘要:
Optical fibers are embedded in metal structures and components by using a pair of stress-relieving tubes at the air-metal interface of the optical fiber.
摘要:
The present invention is directed to a sensor which utilizes an optical fiber interferometer to detect the absorption of a modulated laser beam by a particular chemical species. In particular, one embodiment of the present invention comprises a fiber optic system in which light from a continuously operating laser is modulated prior to passing through a region containing a chemical species of interest. Absorption of the light from the laser causes heating of the chemical species which, in turn, emits thermal energy that is transferred to an optical fiber that is situated in close proximity to the region in which the light is absorbed. In turn, the increase of the temperature of the optical fiber results in a change in the fiber's refractive index, thereby resulting in a change in the transmittance of said interferometer. The change in transmittance of the fiber is converted into an electrical signal in a photodetector. Thereafter, the modulated signal from the photodetector is recovered by phase-sensitive detection, using a lock-in amplifier. In this fashion, the amplitude of the output signal from the amplifier is proportional to the amount of light absorbed by the chemical species of interest. The concentration of this chemical species may thus be determined.
摘要:
An electromagnetic signal processor is disclosed comprising an input waveguide, an intermediate waveguide, and an output waveguide. The intermediate waveguide comprises two portions having substantially equal electromagnetic impedances. The two portions of the intermediate waveguide are coupled to each other at a first and a second junction. The input and output waveguides are electromagnetically coupled to the intermediate waveguide at the first and the second junctions, respectively. Electrically coupled to the intermediate waveguide is a semiconductor device responsible for processing input electromagnetic signals. The input waveguide functions to receive and direct an input electromagnetic signal to the first junction of the intermediate waveguide. At the first junction, the intermediate waveguide separates the input signal into two signals having substantially equal amplitudes. Each of the separate signals propagates along one of the two portions of the intermediate waveguide and as they propagate, the separate signals are processed by the semiconductor device. At the second junction, the separate signals recombine to form a single output signal and this output signal is transmitted via the output waveguide.