摘要:
An object is to provide a PTC element capable of preventing lead terminals from delaminating from an element body. This PTC element 1 is a PTC element comprising an element body 10 in which an electroconductive filler is dispersed in a crystalline polymer, and a pair of terminal electrodes 12, 14 thermocompression-bonded with the element body 10 in between, wherein each of the pair of terminal electrodes 12, 14 has an overlapping region 121, 141 overlapping with the element body 10, and a nonoverlapping region 122, 142 not overlapping with the element body 10, and wherein the nonoverlapping region 122, 142 of each of the pair of terminal electrodes 12, 14 is constructed of a succession of a wide portion 122a a width of which is large across a direction in which the terminal electrode 12, 14 extends from the element body 10, and a narrow portion 122b a width of which is smaller than the width of the wide portion 122a.
摘要:
In a PTC thermistor comprising at least a pair of electrodes disposed so as to face each other and a thermistor element disposed between the electrodes and having a positive resistance-temperature characteristic, the thermistor element is a molded body constituted by a high molecular matrix, a low molecular organic compound, and conductive particles having electric conductivity, the molecular weight of the high molecular matrix is between 10,000 and 400,000, the molecular weight of the low molecular organic compound is between 100 and 3,000, and the high molecular matrix is an olefin-type high molecular compound having a melting start temperature of between 85 and 95° C.
摘要:
A PTC element comprising a PTC element body containing a polymer matrix and conductive particles, a pair of electrodes in contact with the PTC element body, and a protective layer composed of a cured epoxy resin composition containing an epoxy resin and a thiol-based curing agent, and covering the PTC element body so as to seal the PTC element body.
摘要:
A method of manufacturing a PTC element comprising a pair of lead terminals bonded together by thermocompression with a matrix held therebetween comprises a matrix preparing step of preparing a matrix constructed by dispersing a conductive filler into a crystalline polymer; a terminal preparing step of preparing a pair of lead terminals holding the matrix therebetween, a surface of each lead terminal facing the matrix being formed with a plurality of anchor protrusions separated from each other; a flattening step of flattening the anchor protrusions formed in respective nonoverlapping areas in the pair of lead terminals kept from overlapping the matrix; and a thermocompression bonding step of holding the matrix between respective overlapping areas in the pair of lead terminals overlapping the matrix, and securing the pair of lead terminals and the matrix together by thermocompression bonding.
摘要:
A PTC thermistor 10 comprises, at least, a pair of electrodes 2, 3 and a thermistor body 1, disposed between the electrodes 2, 3, having a positive resistance vs. temperature characteristic. The thermistor body includes, at least, a thermoplastic resin and an electrically conductive particle made of a metal powder. The thermoplastic resin and electrically conductive particle have respective contents and a state of dispersion adjusted so as to yield a magnetization of 4.0×10−5 to 6.0×10−5 Wb·m·kg−1 when a magnetic field of 3.98×105 A·m−1 is applied to the thermistor body.
摘要翻译:PTC热敏电阻10至少包括一对电极2,3和设置在电极2,3之间的具有正电阻与温度特性的热敏电阻体1。 热敏电阻体至少包括热塑性树脂和由金属粉末制成的导电颗粒。 热塑性树脂和导电颗粒具有各自的含量和调节状态,以便产生4.0×10 -5至6.0×10 -5 Wb.m的磁化强度。 当将3.98×10 5 Am -1的磁场施加到热敏电阻体时,该电流为1000KΩ。
摘要:
In a PTC thermistor comprising at least a pair of electrodes 2 and 3 disposed so as to face each other and a thermistor element disposed between the electrodes 2 and 3 and having a positive resistance-temperature characteristic, the thermistor element is a molded body constituted by a high molecular matrix, a low molecular organic compound, and conductive particles having electric conductivity, the molecular weight of the high molecular matrix is between 10,000 and 400,000, the molecular weight of the low molecular organic compound is between 100 and 3,000, and the high molecular matrix is an olefin-type high molecular compound having a melting start temperature of between 85 and 95° C.
摘要:
An organic PTC thermistor having a positive temperature coefficient of resistivity, which comprises a PTC composition comprising an organic polymer having dispersed therein a conductive substance, and at least one pair of electrodes, wherein the conductive substance is tungsten carbide powder; or the electrodes each comprise a metal mesh and a metal layer.
摘要:
A PTC element comprising a PTC element body containing a polymer matrix and conductive particles, a pair of electrodes in contact with the PTC element body, and a protective layer composed of a cured epoxy resin composition containing an epoxy resin and a thiol-based curing agent, and covering the PTC element body so as to seal the PTC element body.
摘要:
A method of manufacturing a PTC element comprising a pair of lead terminals bonded together by thermocompression with a matrix held therebetween comprises a matrix preparing step of preparing a matrix constructed by dispersing a conductive filler into a crystalline polymer; a terminal preparing step of preparing a pair of lead terminals holding the matrix therebetween, a surface of each lead terminal facing the matrix being formed with a plurality of anchor protrusions separated from each other; a flattening step of flattening the anchor protrusions formed in respective nonoverlapping areas in the pair of lead terminals kept from overlapping the matrix; and a thermocompression bonding step of holding the matrix between respective overlapping areas in the pair of lead terminals overlapping the matrix, and securing the pair of lead terminals and the matrix together by thermocompression bonding.
摘要:
An object is to provide a PTC element capable of preventing lead terminals from delaminating from an element body. This PTC element 1 is a PTC element comprising an element body 10 in which an electroconductive filler is dispersed in a crystalline polymer, and a pair of terminal electrodes 12, 14 thermocompression-bonded with the element body 10 in between, wherein each of the pair of terminal electrodes 12, 14 has an overlapping region 121, 141 overlapping with the element body 10, and a nonoverlapping region 122, 142 not overlapping with the element body 10, and wherein the nonoverlapping region 122, 142 of each of the pair of terminal electrodes 12, 14 is constructed of a succession of a wide portion 122a a width of which is large across a direction in which the terminal electrode 12, 14 extends from the element body 10, and a narrow portion 122b a width of which is smaller than the width of the wide portion 122a.