摘要:
A heat sink for an electronic device includes a Cr—Cu alloy layer including a Cu matrix and more than 30 mass % and not more than 80 mass % of Cr; and Cu layers provided on top and rear surfaces of the Cr—Cu alloy layer.
摘要:
In a Cr—Cu alloy that is formed by powder metallurgy and contains a Cu matrix and flattened Cr phases, the Cr content in the Cr—Cu alloy is more than 30% to 80% or less by mass, and the average aspect ratio of the flattened Cr phases is more than 1.0 and less than 100. The Cr—Cu alloy has a small thermal expansion coefficient in in-plane directions, a high thermal conductivity, and excellent processibility. A method for producing the Cr—Cu alloy is also provided. A heat-release plate for semiconductors and a heat-release component for semiconductors, each utilizing the Cr—Cu alloy, are also provided.
摘要:
It is an object to provide an inexpensive alloy for heat dissipation having a small thermal expansion coefficient as known composite materials, a large thermal conductivity as pure copper, and excellent machinability and a method for manufacturing the alloy. In particular, since various shapes are required of the alloy for heat dissipation, a manufacturing method by using a powder metallurgy method capable of supplying alloys for heat dissipation, the manufacturing costs of which are low and which take on various shapes, is provided besides the known melting method. The alloy according to the present invention is a Cu—Cr alloy, which is composed of 0.3 percent by mass or more, and 80 percent by mass or less of Cr and the remainder of Cu and incidental impurities and which has a structure in which particulate Cr phases having a major axis of 100 nm or less and an aspect ratio of less than 10 are precipitated at a density of 20 particles/μm2 in a Cu matrix except Cr phases of more than 100 nm.
摘要:
A heat sink for an electronic device includes a Cr—Cu alloy layer including a Cu matrix and more than 30 mass % and not more than 80 mass % of Cr; and Cu layers provided on top and rear surfaces of the Cr—Cu alloy layer.
摘要:
It is an object to provide an inexpensive alloy for heat dissipation having a small thermal expansion coefficient as known composite materials, a large thermal conductivity as pure copper, and excellent machinability and a method for manufacturing the alloy. In particular, since various shapes are required of the alloy for heat dissipation, a manufacturing method by using a powder metallurgy method capable of supplying alloys for heat dissipation, the manufacturing costs of which are low and which take on various shapes, is provided besides the known melting method. The alloy according to the present invention is a Cu—Cr alloy, which is composed of 0.3 percent by mass or more, and 80 percent by mass or less of Cr and the remainder of Cu and incidental impurities and which has a structure in which particulate Cr phases having a major axis of 100 nm or less and an aspect ratio of less than 10 are precipitated at a density of 20 particles/μm2 in a Cu matrix except Cr phases of 100 nm or more.
摘要翻译:本发明的目的是提供一种廉价的散热合金,其具有作为已知的复合材料的热膨胀系数小,作为纯铜的大的热导率,以及优异的机械加工性以及该合金的制造方法。 特别是,由于需要散热用合金的各种形状,因此除了制造成本低,采取各种形状以外,还提供了能够提供散热用合金的粉末冶金法的制造方法 已知的熔化方法。 根据本发明的合金是Cu-Cr合金,其由0.3质量%以上,80质量%以下的Cr和余量的Cu和附带的杂质组成,并且具有以下结构:颗粒 具有100nm或更小的长轴和小于10的长宽比的Cr相在除100nm以上的Cr相外的Cu基体中以20个/ m 2的密度析出。
摘要:
In a Cr—Cu alloy that is formed by powder metallurgy and contains a Cu matrix and flattened Cr phases, the Cr content in the Cr—Cu alloy is more than 30% to 80% or less by mass, and the average aspect ratio of the flattened Cr phases is more than 1.0 and less than 100. The Cr—Cu alloy has a small thermal expansion coefficient in in-plane directions, a high thermal conductivity, and excellent processability. A method for producing the Cr—Cu alloy is also provided. A heat-release plate for semiconductors and a heat-release component for semiconductors, each utilizing the Cr—Cu alloy, are also provided.