Abstract:
A method and apparatus for enhancing and improving image quality are provided. The method includes separating an input image into at least one low frequency component and at least one high frequency component; modulating the low frequency components in a block unit by dithering; modulating the high frequency components by sampling; and combining the modulated low frequency components and the modulated high frequency components.
Abstract:
A method of reconstructing a high-resolution image by using multi-layer low-resolution images includes dividing a low-resolution image into a plurality of texture layer low-resolution images and a plurality of base layer low-resolution images; generating a texture layer high-resolution image by compositing the plurality of the texture layer low-resolution images and generating a base layer high-resolution image by compositing the plurality of the base layer low-resolution images; and outputting a high-resolution image by compositing the texture layer high-resolution image and the base layer high-resolution image.
Abstract:
A method of processing an image is disclosed. The method includes transforming an original image to generate an edge image by using multi-resolution transformation; performing a first image enhancement process on the edge image according to a type of original image; generating an inverse transform image by performing inverse multi-resolution transformation on the edge image; and performing a second image enhancement process on the inverse transform image according to a type of original image, thereby enhancing image quality.
Abstract:
A method of reconstructing a high-resolution image by using multi-layer low-resolution images includes dividing a low-resolution image into a plurality of texture layer low-resolution images and a plurality of base layer low-resolution images; generating a texture layer high-resolution image by compositing the plurality of the texture layer low-resolution images and generating a base layer high-resolution image by compositing the plurality of the base layer low-resolution images; and outputting a high-resolution image by compositing the texture layer high-resolution image and the base layer high-resolution image.
Abstract:
A shared key management method for a Supervisory Control And Data Acquisition (SCADA) system in which a master terminal unit (MTU), a plurality of sub master terminal units (SUB-MTUs), and a plurality of remote terminal units (RTUs) are configured in a sequential hierarchy, is provided. The method includes: (a) at the MTU, generating a plurality of secret keys and respectively allocating the secret keys to the RTUs; (b) at the MTU, generating a group key in a tree structure, wherein a leaf node of the tree structure corresponds to each RTU, a parent node of a node corresponding to an RTU corresponds to a SUB-RTU to which the RTU is connected, a shared key of each node of the group key is generated by hashing shared keys of all child nodes, and a shared key of a leaf node of the group key is set as a secret key of the RTU; (c) at the RTU or the SUM-MTU, receiving and storing shared keys of every node from a node corresponding to itself to a root node; (d) when the RTU or the SUM-MTU is added or deleted, at the MTU, generating shared keys of nodes along a path from a node corresponding to the added or deleted terminal unit to the root node again; and (e) at the RTU or the SUB-MTU, receiving and storing the generated shared keys. According to the key management method for the SCADA system described above, in the case of encrypting and broadcasting or multicasting a message, a computation amount can be reduced.
Abstract:
An MPEG-4 encoder utilizing an H.263 multimedia chip. The MPEG-4 encoder includes a DC (Direct Current) predictor for predicting a DC component of the image frame encoded by an H.263 standard upon receiving a prescribed MPEG-4 quantization value, and an MPEG-4 reconstruction image memory for converting the H.263 reconstruction image into an MPEG-4 reconstruction image, and storing the MPEG-4 reconstruction image. The MPEG-4 encoder removes spatial redundancy from source image data entered in frame units using a prescribed H.263 quantization value, predicts a DC component of an image frame having no spatial redundancy using a prescribed MPEG-4 quantization value, performs a VLC (Variable Length Coding) process on the image frame using the predicted DC component, and outputs the VLC-processed image frame in the form of an MPEG-4 bit stream. The MPEG-4 encoder reconstructs the image frame having no spatial redundancy, stores the reconstructed image frame, converts the reconstructed image frame into an MPEG-4 frame, stores the MPEG-4 frame, compares the stored image frame with a newly-entered next frame, and removes temporal redundancy according to a result of the comparison.
Abstract:
The present invention relates to a contact lens for presbyopia and, more specifically, to a contact lens for presbyopia, providing both a far-distance vision area and a near-distance vision area in one contact lens, and continuously forming a lens magnification of the far-distance vision area and the near-distance vision area of the dominant eye and the non-dominant eye while changing the sizes of the far-distance vision area and the near-distance vision area of two eyes according to the dominant eye and the non-dominant eye, such that an intermediate-distance area is partially overlapped, thereby continuously providing a near-distance vision area at a far distance by a neural summation phenomenon that selects a clearly visible image in both eyes.
Abstract:
A method of improving picture quality in a composite video burst signal includes dividing the composite video burst signal into a plurality of frequency bands using a low pass filter and a high pass filter, performing wavelet packet filtering of frequency bands including a chrominance signal having energy higher than a specified threshold among the plurality of frequency bands, and performing Wiener filtering of frequency bands including a chrominance signal having energy lower than a specified threshold.
Abstract:
An H.263/MPEG video encoder using DCT in a mobile communication terminal. The H.263/MPEG video encoder controls a quantization value using granularity analysis by motion estimation and efficiently controls bit rates. The H.263/MPEG video encoder performs DCT for an input image (N−1), quantizes the input image to output the input image as a video stream, decodes the quantized signal by means of inverse quantization (IQ) and inverse discrete cosine transform (IDCT), and performs motion estimation in comparison with a next input image (N). The H.263/MPEG video encoder includes a granularity analyzing section for analyzing granularity using a result of performing the motion estimation, a granularity control section for controlling a quantization value for the quantization according to an analysis result of the granularity analyzing section, and a frame rate control section for controlling a frame speed of an output of the video stream.
Abstract:
A fast discrete wavelet encoding apparatus and method for encoding and decoding a still image are provided. In the fast discrete wavelet encoding apparatus, an energy calculator calculates the energy of an input image, block by block, each block having a predetermined number of pixels, an adaptive image decomposer determines a lifting transform level for each block adaptively according to the energy of the block, and a lifting encoder lifting encodes the input image according to the lifting transform levels determined for the blocks of the image.