摘要:
Using improved Image Signal Processing (ISP) along with a multi-layer Color Filter Array (CFA) architecture to capture both the Red-Green-Blue (RGB) as well as the Red-X-Blue (RXB) images substantially simultaneously on the same Complementary Metal Oxide Semiconductor (CMOS) image sensor chip in a single shot so that subsequent image processing stage(s) can choose between RGB and RXB images to improve the quality of the final image. The color “X” in the RXB image may be a white color, a yellow color, or a cyan color. In contrast to the individual RWB or RGB imaging based conventional CMOS sensors, the disclosed CMOS sensor with one or more layers of specifically-selected CFAs can capture both the RGB and RXB images in a single shot using associated ISP. The multi-layer sensor may be an organic sensor or a stacked X3 sensor. The dual RGB-RXB imaging may reduce colorblindness, chromatic aberration, and saturation artifacts.
摘要:
A method for enhancing at least one image within a series of images is provided. The method includes: selecting the series of images; upscaling each image within the series of images; selecting a reference image among the series of images; performing image registration to align series of images with the reference image; evaluating the series of aligned images for a subset of pixel locations that exhibit high cross-frame variation; performing learning processing to substantially reduce noise and exclude motion biases at the subset of pixel locations; performing pixel fusion from the series of aligned and processed images to produce the super-resolution reference image. A computer program product and an imaging system are disclosed.
摘要:
Using the same image sensor to capture a two-dimensional (2D) image and three-dimensional (3D) depth measurements for a 3D object. A laser point-scans the surface of the object with light spots, which are detected by a pixel array in the image sensor to generate the 3D depth profile of the object using triangulation. Each row of pixels in the pixel array forms an epipolar line of the corresponding laser scan line. Timestamping provides a correspondence between the pixel location of a captured light spot and the respective scan angle of the laser to remove any ambiguity in triangulation. An Analog-to-Digital Converter (ADC) in the image sensor operates as a Time-to-Digital (TDC) converter to generate timestamps. A timestamp calibration circuit is provided on-board to record the propagation delay of each column of pixels in the pixel array and to provide necessary corrections to the timestamp values generated during 3D depth measurements.
摘要:
Pixels of an array capture values for an input image. The captured values correspond to pixel center points of the pixels that captured the values. Additional values about the input image may be further computed from the captured values. These additional values may correspond to additional center points, which can be different from any of the pixel center points. An output image may be constructed from the captured values plus the additional values. These values may be stored together and/or displayed together as the output image. Embodiments are applicable to images such as from multi-layer sensors. Since the output image can be created from a higher total number of values than those captured by the available number of pixels, such image processing can be called super-resolution, and can be applied to image processing within imaging devices, for still pictures, video and motion pictures, and so on.
摘要:
In embodiments, a T-O-F depth imaging device renders a depth image of an object that has corrected depth values. The device includes a pixel array that uses an Electronic Rolling Shutter scheme. The device also includes a light source that transmits towards the object light that is modulated at an operating frequency, and an optical shutter that opens and closes at the operating frequency. The optical shutter further modulates the light that is reflected from the object, before it reaches the pixel array. The transmission of the light and the operation of the shutter change phase relative to each other while at least one of the pixels is sensing the light it receives, which permits a faster frame rate. Depth is determined by the amount of light sensed by the pixels, and a correction is computed to compensate for the changing phase.
摘要:
An image sensor includes a first photoelectric conversion element supplying charges to a first charge storage node, a first charge storage element adjusting an amount of charges supplied from a charge supply source to the first charge storage node in response to a feedback signal, and a feedback signal generating circuit generating the feedback signal based on an amount of charges in the first charge storage node.
摘要:
A method, apparatus, and system are provided by which image line data of an image frame is compressed before being stored to image line memory used in multiple image line processing.
摘要:
A method and apparatus for processing imager pixel signals to reduce noise. The processing includes receiving a target pixel signal, receiving at least one neighboring pixel signal, formulating a dynamic noise signal based at least in part on a value of the target pixel signal, and controlling a noise reduction operation using the dynamic noise signal.
摘要:
A method and apparatus for applying tonal correction to images to obtain a more pleasing photographic image by redistributing low-key, mid-tone and high-key tones. Luminance is calculated by using formulas appropriate for the color space or directly inputted. Two color-difference components are computed for the original image. Luminance is subjected to a tonal correction function to obtain a tonal corrected luminance. Luminance gain is calculated and applied to the color-difference components to obtain two tonal corrected color-difference components. The tonal corrected luminance and two tonal corrected color-difference components can be directly output or used to calculate three color component signals for the desired color space.
摘要:
Methods and apparatuses for noise reduction include embodiments that use a weighted combination based on the presence of edges of two calculated demosaiced signals to produce a noise reduced signal. The noise reduced signal may be sharpened based on a calculated luminance of the two demosaiced signals.