Abstract:
A reception device for receiving an OFDM signal whose level is maintained constant by performing an AGC control which adjusts an amplification gain by means of a discrete gain value includes an equalization section operable to execute an equalization process of detecting, respectively, distortions of a plurality of reference subcarriers regularly included in the OFDM signal on which the fast Fourier transform has been performed, and of estimating, by means of an interpolation using the detected distortions, a distortion of the OFDM signal, which distortion is caused by transmission path propagation so as to correct the estimated distortion of the OFDM signal, and the equalization section corrects, by using the AGC control signal, an estimated error of the distortion of the OFDM signal, which distortion is caused by a discrete amplification gain variation of the OFDM signal.
Abstract:
An OFDM reception device detects a time at which impulse noise occurs in a received OFDM signal, and specifies a start position candidate period that does not have intersymbol interference and is estimated to have a guard interval signal in a symbol. When setting a FFT window of an effective symbol length in a symbol duration of each symbol, if the impulse noise occurrence time is included in the symbol, the OFDM reception device determines a start position of the FFT window within a range of the start position candidate period so as to exclude the impulse noise occurrence time as much as possible.
Abstract:
An OFDM baseband signal that has undergone a synchronization carrier modulation or a differential carrier modulation is inputted to a complex signal converter for nonlinear distortion equalization so as to be converted according to the N-th order function conversion characteristics (N>1). Then, nonlinear distortion in the OFDM baseband signal is compensated for. At this time, the following is used as a conversion equation: y(n)=x(n)+Σam(n)xm(n)(m>1) wherein the values of the input signal, the output signal and the coefficient for m-th order distortion equalization at time n are, respectively, x(n), y(n) and am(n).
Abstract:
A digital signal receiver includes a reference signal generator for generating a first reference signal, a base band transform circuit for converting a first high-frequency signal with digital modulation into a base band signal with using the first reference signal, a frequency divider to divide the first reference signal, a frequency multiplier to multiply a frequency of a signal output from the frequency divider, and a digital demodulator to demodulate a signal output from the base band transform circuit with using the signal output from the frequency multiplier as a reference signal. The digital signal receiver consumes a small power since a small current flows in the frequency multiplier.
Abstract:
A forward error correcting transmitter and receiver for preventing the erroneous detection of synchronization is provided in a system in which synchronization of an interleaver circuit and a deinterleaver circuit, to be inserted between a convolutional encoder and a Viterbi decoder, is obtained from a synchronization detecting circuit of the Viterbi decoder. A LFSR (Linear Feedback Shift Register) is used as a row-direction address counter during writing and an up/down counter is used as a column-direction address counter during reading, during the interleaver circuit. In the deinterleaver circuit, an up/down counter is used as the column-direction address counter during writing, and an LFSR is used as the row-direction address counter during reading.
Abstract:
Radio waves used in broadcasting and communications making use of broadcasting satellite and communication satellite are FM signals, and the frequency shift and exclusive bandwidth vary depending on the modulation signal. The satellite broadcasting receiver is designed to control the frequency shift so that the amplitude of the demodulation signal is constant, thereby making the bandwidth of the intermediate frequency filter, so as to be capable of receiving using just one filter. At this time, the frequency shift can be controlled continuously, from large to small one, in a predetermined exclusive bandwidth. When further expanding the frequency shift, since the exclusive bandwidth is extended, the noise electric power is increased and the receiving sensitivity is lowered as compared with the exclusive machine. Accordingly, when expanding the frequency shift, the noise bandwidth is narrowed in the PLL demodulator, thereby enhancing the receiving sensitivity.
Abstract:
The invention relates to a television receiving tuner for receiving television signals of VHF band/UHF band, a CATV signal, and a satellite television broadcasting signal. As a circuit for receiving the television signals of the VHF band/UHF band and the CATV signal as a first input signal, there is provided a double super type tuner of the up/down converter system including a first local oscillator (6) and a first mixer (5) which construct an up converter and a second local oscillator (10) and a second mixer (9) which construct a down converter. When the satellite television broadcasting signal as a second input signal is received, the first local oscillator (6) and the first mixer (5) in the up converter section are switched by switching circuits (12, 13) and used as a down converter. At least the first local oscillator (6) and the first mixer (5) are commonly used both for reception of the television signals of the VHF band/UHF band and the CATV signal and for reception of the satellite television broadcasting signal, thereby accomplishing the simplification of the construction and the low costs.
Abstract:
A receiving device performs reception in a service period of a broadcast signal and switches to a power saving mode in a non-service period. The service period is composed of a first period during which an application data table of an MPE-FEC frame is transmitted and a second period, following the first period, during which an RS data table of the MPE-FEC frame is transmitted. An error correction unit 12 performs one of error correction that uses the whole RS data table according to MPE-FEC, and erasure correction that uses a same number of parity bytes as bytes having bit errors. When the bit errors are corrected by the error correction unit 12 performing erasure correction, a power control unit 30 switches a receiving circuit to a power saving mode before the second period ends.
Abstract:
The present invention aims to provide a reception apparatus that receives and demodulates a signal transmitted by using time-division multiplexing, with reduced power consumption. In detail, a receiving unit including a tuner operates to receive a signal only during a time period for which a desired signal is transmitted. The received signal is converted into digital data, and the digital data is stored into a memory. With the use of the digital data stored in the memory, a PLL performs all of the necessary operations from synchronization establishment to demodulation.
Abstract:
Frequency conversion into a first intermediate frequency which is higher than a received frequency band is performed for a received signal by using a mixer and a PLL. Next, an output of the mixer is frequency converted into a second intermediate frequency of a base band by using a quadrature mixer formed by mixers and a phase shifter. At this time, a frequency of the local oscillation signal of a PLL supplied to the quadrature mixer is controlled so as to be switched, depending on a position of the received segment, between a frequency which is higher than the first intermediate frequency and a frequency which is lower than the same.