Abstract:
An apparatus for endpoint detection during removal of material from an electronic component includes a mounting plate operable to provide physical and electrical attachment for a device-under-test (DUT), a spindle operable to hold a tip for removing material from the DUT, a signal generator operable to provide an input signal to a first electrode, and a microprocessor connected to use an output signal from a second electrode to terminate the removal of material when an endpoint is reached, the first electrode being one of the tip and the DUT and the second electrode being the opposite one of the tip and the DUT.
Abstract:
A more efficient portable emission microscope system comprising a cooled CCD camera coupled to microscope optics for detection of photon emissions from integrated circuits. Portability is achieved with a small light tight box and rubber boot combination which are used in conjunction with a probe station or portable stand. The optics are modified to contain an illuminating ring of light emitting diodes for sample illumination prior to or after emission acquisition. Sensitivity is increased by elevating the substrate temperature. In operation, an integrated circuit is enclosed by a rubber boot. An illuminated reference image is then obtained with the LEDs "on," and a background image is obtained with the LEDs "off." The background image represents illumination noise. The temperature of the circuit is then raised while the circuit is biased. Temperature elevation is accomplished by installing small power resistors at the base of an appropriate burn-in socket. This elevation in temperature causes photon emissions from faults in the circuit. An illumination image is then obtained which captures the photon emissions. The background image is then subtracted from the illumination image to filter the image. Finally, the illumination image is superimposed on the reference image to allow a user to determine the exact location of any failures.
Abstract:
An apparatus for endpoint detection during removal of material from an electronic component includes a mounting plate operable to provide physical and electrical attachment for a device-under-test (DUT), a spindle operable to hold a tip for removing material from the DUT, a signal generator operable to provide an input signal to a first electrode, and a microprocessor connected to use an output signal from a second electrode to terminate the removal of material when an endpoint is reached, the first electrode being one of the tip and the DUT and the second electrode being the opposite one of the tip and the DUT.
Abstract:
An emission microscopy system with a coherent illuminator system and method wherein an incident energy beam is directed at an end of image conduit rotating around its axis. The incident energy beam may be generated by a laser or similar radiation source. A substantially cylindrically uniform radiation spot is obtained from the other end of the image conduit, which may be guided by waveguide means to an emission microscope used in IC failure analysis.
Abstract:
A method for detecting an endpoint during removal of material from an electronic device includes while removing material from an electronic device-under-test (DUT) using a tip driven by a spindle, applying an input signal to the DUT via the tip and using an output signal received from one of the DUT and a mounting plate to which the DUT is attached to determine an endpoint for removal of material.
Abstract:
A coherent illuminator system and method wherein an incident energy beam is directed at an end of image conduit rotating around its axis. The incident energy beam may be generated by a laser, maser, or similar radiation source. A substantially cylindrically uniform radiation spot is obtained from the other end of the image conduit, which may be guided by waveguide means to an application element such as, for example, an emission microscope or a medical instrument.
Abstract:
A method and apparatus for analyzing failures in integrated circuits. A first image is obtained using an emission or electron microscope while an integrated circuit is operating under a first set of conditions. The image is integrated for improved resolution with a camera in front of the microscope screen or with a digitizer coupled to receive video signals from the microscope. The first image is digitized and stored in a first channel of an RGB digitizer board and displayed on a display screen. A second image is obtained in the same way and is digitized and stored in a second channel of the RGB digitizer board and displayed on the display screen. The remaining channel of the RGB digitizer board is coupled to receive live images. The resulting combined image appears as a black and white image so long as the images are aligned. Any differences between the three images will appear conspicuously in color. The input logic levels to the integrated circuit are changed. Nodes having changed logic levels will appear in color in the display because they will only affect the third channel. In addition, the displayed image will simultaneously show nodes which have not changed states in different shades of grey depending upon the unchanged logic level. The displayed image may then be compared to a previously obtained reference image from an integrated circuit known to not have any defects. Any differences between the two images will indicate the exact location of a failure or defect.
Abstract:
A system and method for preparing semiconductor samples for analytical techniques such as backside emission microscopy. Samples may be prepared from a wafer or packaged die. In package form, the package is affixed to a polishing jig such that the backside of the die is oriented to face a polishing wheel. The package material is removed until die attach paddle and the backside of the die are exposed. The material is further removed until a selected thinness of the die is obtained. If the package's leadframe or a portion thereof remains after the removal of package material, a suitable testing fixture is attached thereto. If the leadframe is sacrificed, wire spots on the polished side of the semiconductor die are wire-to-wire bonded to a second leadframe's conductive fingers. In wafer form, the die is separated and encapsulated with a suitable substantially rigid material to form a substantially rigid body that is affixed to the polishing jig.
Abstract:
A portable emission microscope for analyzing failures in an integrated circuit chip while the chip is contained within a wafer sorter. A base for the microscope is placed over an opening in the wafer sorter. A translational apparatus is attached to the base for lowering a charge coupled device camera into an opening in the wafer sorter. A compact housing containing microscope optics is coupled to the camera. Also, a flexible rubber boot is coupled to the microscope optics for shielding extraneous light from entering the camera. A vibration reducing apparatus is coupled to the microscope optics for preventing movement of the camera relative to the chip. The vibration reducing apparatus fits within the rubber boot and is a rigid, hollow cylinder having an adjustable length. The microscope optics view the chip through the cylinder. The cylinder is adjusted such that when the camera is lowered into position over the chip, the microscope optics are an appropriate distance from the chip, the cylinder presses against, and firmly contacts, the surface surrounding the chip, preventing movement of the camera relative to the chip, while the rubber boot resiliently conforms to the surface surrounding the chip. A illumination system selectively illuminates the chip with one of two illumination sources. A first illumination source is a fibre optic ring housed within the rubber boot. A second illumination source illuminates the integrated circuit through the microscope objective lens.
Abstract:
A method for detecting an endpoint during removal of material from an electronic device includes while removing material from an electronic device-under-test (DUT) using a tip driven by a spindle, applying an input signal to the DUT via the tip and using an output signal received from one of the DUT and a mounting plate to which the DUT is attached to determine an endpoint for removal of material.