Abstract:
The invention relates to a method of operating a communication network, the network comprising a plurality of stations which are able to transmit data to and receive data from one another so that a message comprising a plurality of data packets is sent from an originating station to a destination station via at least one opportunistically selected intermediate station. The method makes use of probe signals transmitted from each station on a selected probing channel to which other stations respond to indicate their availability as destination or intermediate stations. A Request to Send message is sent, with a Clear to Send message returned by an available station. The station with data to send opportunistically selects an available station and the selected station uses a Packet Acknowledge message to confirm successful reception of the transmitted data packet. An End-to-End Acknowledge message is sent by the originating station, directly or indirectly, to confirm receipt of said data packets.
Abstract:
The invention provides a method of operating a communication network and a network itself. The network comprises a plurality of wireless stations, each station being able to transmit and receive data so that the network can transmit a message comprising a plurality of data packets from an originating station to a destination station via at least one intermediate station. At least some of the stations have a controllable antenna system operable to direct a null selectively. The method includes selecting, at each station, one or more probing channels for the transmission of probe signals to other stations. At stations having a controllable antenna system, the presence of interference on said one or more probing channels is detected, and one or more nulls are selectively directed towards the source or sources of the interference. Typically, a null is directed towards a source of interference where the level of the interference exceeds a predetermined level. Each station transmits neighbor gathering probe signals on the selected probing channel or channels, and other stations which receive the neighbor gathering probe signals from a probing station respond directly or indirectly to thereby indicate to the probing station their availability as destination or intermediate neighbor stations. The presence of the nulls affects the ability of other stations to receive the neighbor gathering probe signals, and the resulting variations in the connectivity between stations provides variations in the availability of neighbor stations to each station.
Abstract:
The invention relates to a method of operating a communication network, the network comprising a plurality of stations which are able to transmit data to and receive data from one another. The method comprises monitoring, at each station, the transmission path quality between that station and each other station with which that station can communicate. Data corresponding to the monitored path quality is recorded at each station, thereby permitting a transmission power value based on the relevant path quality data to be selected when transmitting data to another station. Thus, the probability of transmitting data to any selected station at an optimum power level is increased. Each station transmits path quality data in its own transmissions as well as local noise/interference data, so that other stations can obtain path quality data for a particular station even if they are out of range of that particular station. The invention extends to communication apparatus which can be used to implement the method.
Abstract:
The invention provides a method of operating a network which comprises a plurality of stations each able to transmit and receive data so that the network can transmit data directly, or indirectly via one or more intermediate stations, between a requesting station and potential resource providing stations. The method comprises monitoring, at each station, the activity and/or resources of other stations on the network to establish the availability of resources at the other stations, and transmitting, from a requesting station requiring a specified resource, resource request probe signals identifying the specified resource. The resource may be data, connectivity, memory/storage, or another resource. At each station receiving the resource request probe signals, the availability of the specified resource or a portion thereof is determined, and hence whether said station is a potential resource providing station. If such a potential resource providing station has the specified resource or a portion thereof, response data is transmitted directly, or indirectly via one or more intermediate stations, to the requesting station indicating the availability of the specified resource or portion thereof to the requesting station. The requesting station is then given access to the specified resource or portion thereof from at least one resource providing station selected from one or more potential resource providing stations. The invention extends to a network for implementing the method.
Abstract:
The invention provides a method of operating a network which comprises a plurality of stations each able to transmit and receive data so that the network can transmit data directly, or indirectly via one or more intermediate stations, between a requesting station and potential resource providing stations. The method comprises monitoring, at each station, the activity and/or resources of other stations on the network to establish the availability of resources at the other stations, and transmitting, from a requesting station requiring a specified resource, resource request probe signals identifying the specified resource. The resource may be data, connectivity, memory/storage, or another resource. At each station receiving the resource request probe signals, the availability of the specified resource or a portion thereof is determined, and hence whether said station is a potential resource providing station. If such a potential resource providing station has the specified resource or a portion thereof, response data is transmitted directly, or indirectly via one or more intermediate stations, to the requesting station indicating the availability of the specified resource or portion thereof to the requesting station. The requesting station is then given access to the specified resource or portion thereof from at least one resource providing station selected from one or more potential resource providing stations. The invention extends to a network for implementing the method.
Abstract:
The invention relates to a network and to a method of operating a network. The network comprises a plurality of stations each able to transmit and receive data so that the network can transmit data between stations via at least one selected intermediate station. The network further comprises a plurality of levels of stations including a first level comprising user and/or seed stations, a second level comprising auxiliary stations providing access to auxiliary networks, a third level comprising at least one location management station, and a fourth level comprising at least one authentication station. The method comprises transmitting, from or on behalf of a station on the first level requiring authentication, to an authentication station via one or more stations, an authentication request message. In response, the authentication station transmits authentication data via one or more stations to the station on the first level to authenticate the station on the first level. The authentication station maintains a record of each authenticated station on the first level. A location management station monitors the location of each authenticated station on the first level with respect to its connectivity, whether directly or indirectly, with one or more stations on the second level. Where a station on the first level attempts to communicate with another station on any level and is assisted by a station on another level, the assisting station transmits connectivity data directly, or indirectly via other stations, to the station on the first level and/or to an intermediate station.
Abstract:
A network, and a method of operating a network. The network includes a plurality of stations each able to transmit and receive data so that the network can transmit data between stations via at least one selected intermediate station. Each station transmits probe signals in broadcast fashion to other stations to gather a list of neighbor stations. The stations transmit position data and/or position determining data in at least some of the probe signals. Each station maintains position data and/or position determining data received from selected probing stations, and utilizes the data to determine the absolute or relative position of itself and/or other stations. The stations can determine the relative or absolute position of other stations in direct communication with themselves, and also of other stations not in direct communication with themselves.
Abstract:
A method of operating a communication network having multiple stations, each able to transmit and receive data, so that the network can transmit a message from an originating station to a destination station via at least one opportunistically selected intermediate station. Stations wishing to transmit data transmit probe signals which are responded to by other stations, thereby to identify available stations. When a station has data to send, it transmits probe signals with Request to Send messages, identifying the data to be sent. When a station receives such data for onward transmission, it transmits its own probe signals with a Request to Send message and including identification information relating to the data. The Request to Send messages are received by other stations in the vicinity, so that they serve as an implied acknowledgement of the receipt of the data by the forwarding station without the need for sending explicit confirmation.
Abstract:
The invention relates to a method of operating a communication network, the network comprising a plurality of stations which are able to transmit data to and receive data from one another. The method comprises defining a first probing channel for the transmission of probe signals to other stations. Other stations which receive the first probe signals from a probing station indicate to the probing station their availability as destination or intermediate stations. A neighbor table comprising details of these other available stations is maintained at each station. Also, second probe signals are sent and received from stations in the neighbor table and a gradient table comprising data related to the cost of communicating with each neighbor station is maintained at each station, thereby to allow each station to select a predetermined number of intermediate stations for onward transmission of data from an originating station to a destination station at minimum cost.
Abstract:
A communication network including a primary network, and an auxiliary network. The primary network includes wireless stations each able to transmit and receive data over the primary network, and bridge stations able to transmit and receive data both over the primary network and over the auxiliary network. The auxiliary network includes auxiliary stations and bridge stations each able to transmit and receive data over the auxiliary network. At each bridge station, the activity of other stations on both the primary network and the auxiliary network is monitored to establish the availability of intermediate stations for onward transmission of message data from an originating station to a destination station. Message data is transmitted from the originating station to the destination station via at least one opportunistically selected intermediate station, including at least one bridge station.