Abstract:
In accordance with the purpose(s) of the invention, as embodied and broadly described herein, the invention, in one aspect, relates to compounds comprising the structure: and at least one guanidinium residue, wherein m is zero or a positive integer. Also disclosed are methods of preparing the disclosed compounds. Also disclosed are methods of intracellular delivery comprising administering the disclosed compounds and compositions to a subject. Also disclosed are pharmaceutical compositions comprising a therapeutically effective amount of one or more compounds or compositions of the invention and a pharmaceutically acceptable carrier. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
Abstract:
The present invention is directed to particular monoclonal antibodies and fragments thereof that find use in the detection, prevention and treatment of influenza virus infections. In particular, these antibodies may neutralize or limit the replication of H1N1 influenza virus. Also disclosed are improved methods for producing such monoclonal antibodies.
Abstract:
The present invention is directed to alphavirus vectored vaccine contructs encoding paramyxovirus proteins that find use in the prevention of respiratory syncytial virus or human metapneumovirus infections. In particular, these vaccines induce cellular and humoral immune responses that inhibit RSV. Also disclosed are improved methods for producing alphavirus vectored paramyxovirus vaccines.
Abstract:
Human monoclonal antibodies and fragments thereof which bind, neutralize and provide passive immunotherapy to respiratory syncytial virus (RSV) antigenic subgroups A and B are disclosed. Also disclosed are diagnostic and immunotherapeutic methods of using the monoclonal antibodies as well as cell line producing the monoclonal antibodies.
Abstract:
The present invention relates to the identification and cloning of a novel neutralizing human monoclonal antibody to the Respiratory Syncytial Virus. The invention provides such antibodies, fragments of such antibodies retaining RSV-binding ability, chimeric antibodies retaining RSV-binding ability, and pharmaceutical compositions including such antibodies. The invention further provides for isolated nucleic acids encoding the antibodies of the invention and host cells transformed therewith. Finally, the invention provides for diagnostic and therapeutic methods employing the antibodies and nucleic acids of the invention.
Abstract:
A method for providing passive immmunotherapy to respiratory syncytial virus (RSV) disease in a host is disclosed. The method includes administering to a host a human monoclonal antibody Fab fragment that neutralizes both antigenic subgroup A and subgroup B of respiratory syncytial virus (RSV), or a monoclonal antibody comprising the fragment.
Abstract:
The respiratory syncytial virus (RSV) is a major cause of lower respiratory tract disease in infants and children throughout the world. RSV is a major cause of pneumonia and bronchiolitis in infants under one year of age, and is a major cause of fatal respiratory tract disease in these infants. The treatment and prevention of RSV infection has been problematic. However, the present invention addresses some of these concerns by providing attenuated RSV strains that are suitable for inclusion in immunizing compositions. Specifically, the present invention is directed toward the introduction of growth restriction mutations into incompletely attenuated host range-restricted cold-passaged respiratory syncytial virus (cpRSV) strains by further passage of the strains at increasingly reduced temperatures to produce derivative strains which are more satisfactorily attenuated. These cold-adaptation (ca) approaches were used to introduce further attenuation in the parental RSV virus cpRSV-3131, which is incompletely attenuated in seronegative children. Mutants of the parental strain were obtained by selecting for large plaque production at reduced temperatures. An RSV cp-3131 derivative, designated D1, was isolated that produces large plaques at 25° C. Biologically cloned virus D1 produces distinctly and uniformly larger plaques at 25° C. as compared to the parental attenuated strain cpRSV-3131 or wild-type strain A2. Thus, D1 is an attenuated cold-adapted, but not temperature-sensitive, RSV mutant. The invention also provides methods for stimulating RSV-specific immune responses in an individual through the administration of said mutants.
Abstract:
Human monoclonal antibodies and fragments thereof which bind and neutralize respiratory syncytial virus (RSV) antigenic subgroups A and B are disclosed. Also disclosed are diagnostic and immunotherapeutic methods of using the monoclonal antibodies as well as cell lines producing the monoclonal antibodies.
Abstract:
The present invention relates to the identification and cloning of a novel neutralizing human monoclonal antibody to the Respiratory Syncytial Virus. The invention provides such antibodies, fragments of such antibodies retaining RSV-binding ability, chimeric antibodies retaining RSV-binding ability, and pharmaceutical compositions including such antibodies. The invention further provides for isolated nucleic acids encoding the antibodies of the invention and host cells transformed therewith. Finally, the invention provides for diagnostic and therapeutic methods employing the antibodies and nucleic acids of the invention.
Abstract:
The present invention is directed to particular human monoclonal antibodies and fragments thereof that find use in the detection, prevention and treatment of respiratory syncytial virus infections. In particular, these antibodies may neutralize RSV. Also disclosed are improved methods for producing monoclonal antibodies.