Abstract:
A process for forming a reinforced sandwich structure which includes, stacked in height direction thereof, at least one top layer and at least one bottom layer including a fibrous reinforcing material, which top and bottom layer sandwich between them at least one core of a foamed material, the sandwich structure being impregnated with a resin material.The top and bottom layers of fibrous reinforcing material are forwarded along opposite top and bottom faces of the core material to form a multi-layer laminate. A plurality of inserts are inserted in longitudinal and/or transversal direction of the core material interconnecting the top and bottom layer and the core by applying reinforcing fibers at least part of which extend in height direction of the laminate, and the structure is impregnated with a plastic material.
Abstract:
This invention relates to a fluid accumulator comprising a wall (2) encompassing a reservoir (1) for receiving the fluid, part of the wall being elastically deformable. The wall (2) of the fluid accumulator comprises a first wall portion (2A) that is made of a first elastically deformable composite, with fibrous reinforcement material applied in a first density, and a second wall portion (2B) that is made of a second composite with fibrous reinforcement material applied in a second density and an elastic deformability that is the same as or different from the elastic deformability of the first wall portion, the density of the fibrous reinfrocement material in the first and second wall portion (2A, 2B) being different.
Abstract:
The present invention relates to a reinforced sandwich structure (10) comprising stacked in height direction thereof, at least one top layer (2) and at least one bottom layer (3) comprising a fibrous reinforcing material, which top and bottom layer sandwich between them at least one core (1) of a foamed material, the sandwich structure being impregnated with a resin material. The at least one core material comprises at least one insert (9) which extends in height direction of the reinforced sandwich structure (10) over at least part of the height thereof and in at least one of the longitudinal and transversal direction thereof. The at least one top layer (2), the at least one bottom layer (3) and the at least one core material which comprise the at least one insert are connected to each other by means of reinforcing fibers, at least part of which extend in height direction of the sandwich structure.
Abstract:
The present invention relates to a method for producing composite laminate (30) comprising at least a first (21) and second (22) face sheet of a fibrous reinforcing material sandwiching between them a sheet of a core material (5), the method comprising the steps of applying the core material (5) between the first and second face sheet (21, 22) and connecting the first and second face sheet (21, 22) to the core material (5). In the composite laminate of this invention the first and second face sheet (21, 22) and the sheet of core material (5) are connected to each other by tufting together the first layer (21), the core (5) and the second layer (22) using a substantially continuous fibrous reinforcing material, at least part of the fibrous reinforcing material extending in direction of the laminate (30).
Abstract:
The invention relates to a reciprocating slat conveyor comprising a plurality of side by side disposed elongated conveyor slats, means for attaching the slats to at least one of a plurality of longitudinally spaced apart transversely extending drive beams for driving the reciprocating movement of the slats connected thereto, wherein each slat comprises an elongated plank-like upper portion having an upper and a lower surface, at least one leg extending in longitudinal direction of the slat and depending from the lower surface of the slat, the at least one leg being positioned substantially central of the upper portion, the connecting means for connecting the slat to the guide beam being provided to exert a gripping action upon opposite sides of the substantially centrally disposed leg.
Abstract:
A slicing device for slicing a number of articles in one slicing operation. The device includes a frame, a plurality of horizontally disposed cutting blades mounted in the frame, a pusher pushing the article into the cutting blades, and a support positioned between the cutting blades and the pusher. The support is able to support, at least temporarily, the articles prior to slicing. A collector is positioned underneath the cutting blades for collection of the sliced articles. The collector includes first and second collection units for collection of the end and intermediate slices respectively. Further, a method for slicing the article into a plurality of slices, includes the steps of: slicing the article into a number of slices resulting in two end slices and a number of intermediate slices, the intermediate slices being of uniform thickness, and collecting the intermediate slices and the end slices.
Abstract:
A fibre-metal composite panel is formed from a thermoplastic panel and a metal plate, in which the thermoplastic panel and the metal plate are bonded using a chemical crosslinking agent, and the thermoplastic panel is fibre-reinforced. The chemical crosslinking agent has a thermoplastic polyurethane elastomer. Furthermore, a multilayer fibre-metal composite panel and a structural part for a vehicle are provided. A method is provided for manufacturing the fibre-metal composite panel and the multilayer fibre-metal composite panel.
Abstract:
A support panel structure includes at least one panel which extends in longitudinal and cross direction of the support panel structure and essentially forms one integrated structure, which integrated structure is at least partly built up of at least one composite resin laminate building block comprising at least a first and a second face sheet of a fibrous reinforced material with sandwiched in between a sheet of a foamed core material, wherein the first and second face sheet and the sheet of core material are mutually connected by means of fibrous reinforcing material at least part of which extends in height direction of the resin laminate building block, further with the support panel structure including in height direction a multiplicity of composite resin laminate building blocks stacked on top of each other and bonded to each other, at least a first and a second superposed resin laminate building blocks which sandwich between them a layer of a foamed material, the resin laminate building blocks and foamed material being adhered to each other.
Abstract:
A process for forming a reinforced sandwich structure which includes, stacked in height direction thereof, at least one top layer and at least one bottom layer including a fibrous reinforcing material, which top and bottom layer sandwich between them at least one core of a foamed material, the sandwich structure being impregnated with a resin material.The top and bottom layers of fibrous reinforcing material are forwarded along opposite top and bottom faces of the core material to form a multi-layer laminate. A plurality of inserts are inserted in longitudinal and/or transversal direction of the core material interconnecting the top and bottom layer and the core by applying reinforcing fibres at least part of which extend in height direction of the laminate, and the structure is impregnated with a plastic material.
Abstract:
A support panel structure includes at least one panel which extends in longitudinal and cross direction of the support panel structure and essentially forms one integrated structure, which integrated structure is at least partly built up of at least one composite resin laminate building block comprising at least a first and a second face sheet of a fibrous reinforced material with sandwiched in between a sheet of a foamed core material, wherein the first and second face sheet and the sheet of core material are mutually connected by means of fibrous reinforcing material at least part of which extends in height direction of the resin laminate building block, further with the support panel structure including in height direction a multiplicity of composite resin laminate building blocks stacked on top of each other and bonded to each other, at least a first and a second superposed resin laminate building blocks which sandwich between them a layer of a foamed material, the resin laminate building blocks and foamed material being adhered to each other.