Abstract:
A method for producing a semiconductor device such as a RC-IGBT or a BIGT having a patterned surface wherein partial regions doped with dopants of a first conductivity type and regions doped with dopants of a second conductivity type are on a same side of a semiconductor substrate is proposed. An exemplary method includes: (a) implanting dopants of the first conductivity type and implanting dopants of the second conductivity type into the surface to be patterned; (b) locally activating dopants of the first conductivity type by locally heating the partial region of the surface to be patterned to a first temperature (e.g., between 900 and 1000° C.) using a laser beam similar to those used in laser annealing; and (c) activating the dopants of the second conductivity type by heating the substrate to a second temperature lower than the first temperature (e.g., to a temperature below 600° C.). Boron is an exemplary dopant of the first conductivity type, and phosphorous is an exemplary dopant of the second conductivity type. Boron can be activated in the regions irradiated only with the laser beam, whereas phosphorus may be activated in a low temperature sintering step on the entire surface.
Abstract:
A fast recovery diode includes an n-doped base layer having a cathode side and an anode side opposite the cathode side. A p-doped anode layer is arranged on the anode side. The anode layer has a doping profile and includes at least two sublayers. A first one of the sublayers has a first maximum doping concentration, which is between 2*1016 cm−3 and 2*1017 cm−3 and which is higher than the maximum doping concentration of any other sublayer. A last one of the sublayers has a last sublayer depth, which is larger than any other sublayer depth. The last sublayer depth is between 90 to 120 μm. The doping profile of the anode layer declines such that a doping concentration in a range of 5*1014 cm−3 and 1*1015 cm−3 is reached between a first depth, which is at least 20 μm, and a second depth, which is at maximum 50 μm. Such a profile of the doping concentration is achieved by using aluminum diffused layers as the at least two sublayers.
Abstract translation:快速恢复二极管包括具有阴极侧和与阴极侧相对的阳极侧的n掺杂基极层。 p型掺杂阳极层设置在阳极侧。 阳极层具有掺杂分布并且包括至少两个子层。 第一个子层具有第一最大掺杂浓度,其在2×1016cm-3和2×1017cm-3之间,并且高于任何其它子层的最大掺杂浓度。 最后一个子层具有比任何其他子层深度大的最后一个子层深度。 最后的子层深度为90〜120μm。 阳极层的掺杂分布下降,使得在第一深度(至少20μm)和第二深度之间达到在5×10 14 cm -3和1×10 15 cm -3范围内的掺杂浓度,其中 最大为50μm。 通过使用铝扩散层作为至少两个子层来实现掺杂浓度的这种分布。
Abstract:
An exemplary method is disclosed for manufacturing a power semiconductor device which has a first electrical contact on a first main side and a second electrical contact on a second main side opposite the first main side and at least a two-layer structure with layers of different conductivity types, and includes providing an n-doped wafer and creating a surface layer of palladium particles on the first main side. The wafer is irradiated on the first main side with ions. Afterwards, the palladium particles are diffused into the wafer at a temperature of not more than 750° C., by which diffusion a first p-doped layer is created. Then, the first and second electrical contacts are created. At least the irradiation with ions is performed through a mask.
Abstract:
A fast recovery diode includes a base layer of a first conductivity type. The base layer has a cathode side and an anode side opposite the cathode side. An anode buffer layer of a second conductivity type having a first depth and a first maximum doping concentration is arranged on the anode side. An anode contact layer of the second conductivity type having a second depth, which is lower than the first depth, and a second maximum doping concentration, which is higher than the first maximum doping concentration, is also arranged on the anode side. A space charge region of the anode junction at a breakdown voltage is located in a third depth between the first and second depths. A defect layer with a defect peak is arranged between the second and third depths.
Abstract:
A reverse-conducting insulated gate bipolar transistor includes a wafer of first conductivity type with a second layer of a second conductivity type and a third layer of the first conductivity type. A fifth electrically insulating layer partially covers these layers. An electrically conductive fourth layer is electrically insulated from the wafer by the fifth layer. The third through the fifth layers form a first opening above the second layer. A sixth layer of the second conductivity type and a seventh layer of the first conductivity type are arranged alternately in a plane on a second side of the wafer. A ninth layer is formed by implantation of ions through the first opening using the fourth and fifth layers as a first mask.
Abstract:
A reverse-conducting insulated gate bipolar transistor includes a wafer of first conductivity type with a second layer of a second conductivity type and a third layer of the first conductivity type. A fifth electrically insulating layer partially covers these layers. An electrically conductive fourth layer is electrically insulated from the wafer by the fifth layer. The third through the fifth layers form a first opening above the second layer. A sixth layer of the second conductivity type and a seventh layer of the first conductivity type are arranged alternately in a plane on a second side of the wafer. A ninth layer is formed by implantation of ions through the first opening using the fourth and fifth layers as a first mask.
Abstract:
A method for producing a semiconductor device such as a RC-IGBT or a BIGT having a patterned surface wherein partial regions doped with dopants of a first conductivity type and regions doped with dopants of a second conductivity type are on a same side of a semiconductor substrate is proposed. An exemplary method includes: (a) implanting dopants of the first conductivity type and implanting dopants of the second conductivity type into the surface to be patterned; (b) locally activating dopants of the first conductivity type by locally heating the partial region of the surface to be patterned to a first temperature (e.g., between 900 and 1000° C.) using a laser beam similar to those used in laser annealing; and (c) activating the dopants of the second conductivity type by heating the substrate to a second temperature lower than the first temperature (e.g., to a temperature below 600° C.). Boron is an exemplary dopant of the first conductivity type, and phosphorous is an exemplary dopant of the second conductivity type. Boron can be activated in the regions irradiated only with the laser beam, whereas phosphorus may be activated in a low temperature sintering step on the entire surface.
Abstract:
An exemplary method is disclosed for manufacturing a power semiconductor device which has a first electrical contact on a first main side and a second electrical contact on a second main side opposite the first main side and at least a two-layer structure with layers of different conductivity types, and includes providing an n-doped wafer and creating a surface layer of palladium particles on the first main side. The wafer is irradiated on the first main side with ions. Afterwards, the palladium particles are diffused into the wafer at a temperature of not more than 750° C., by which diffusion a first p-doped layer is created. Then, the first and second electrical contacts are created. At least the irradiation with ions is performed through a mask.
Abstract:
A maximum-punch-through semiconductor device such as an insulated gate bipolar transistor (IGBT) or a diode, and a method for producing same are disclosed. The MPT semiconductor device can include at least a two-layer structure having an emitter metallization, a channel region, a base layer with a predetermined doping concentration ND, a buffer layer and a collector metallization. A thickness W of the base layer can be determined by: W = V bd + V pt 4010 kV cm - 5 / 8 * ( N D ) 1 / 8 wherein a punch-through voltage Vpt of the semiconductor device is between 70% and 99% of a break down voltage Vbd of the semiconductor device, and wherein the thickness W is a minimum thickness of the base layer between a junction to the channel region and the buffer layer.
Abstract translation:公开了诸如绝缘栅双极晶体管(IGBT)或二极管的最大穿通半导体器件及其制造方法。 MPT半导体器件可以包括具有发射极金属化的至少两层结构,沟道区,具有预定掺杂浓度ND的基极层,缓冲层和集电极金属化。 基底层的厚度W可以通过以下公式确定:W = V bd + V pt 4010电压kV电压cm -5 / 8 *(ND)1/8其中半导体器件的穿通电压Vpt在 70%和99%的半导体器件的击穿电压Vbd,并且其中厚度W是在结到通道区域与缓冲层之间的基底层的最小厚度。
Abstract:
A fast recovery diode includes a base layer of a first conductivity type. The base layer has a cathode side and an anode side opposite the cathode side. An anode buffer layer of a second conductivity type having a first depth and a first maximum doping concentration is arranged on the anode side. An anode contact layer of the second conductivity type having a second depth, which is lower than the first depth, and a second maximum doping concentration, which is higher than the first maximum doping concentration, is also arranged on the anode side. A space charge region of the anode junction at a breakdown voltage is located in a third depth between the first and second depths. A defect layer with a defect peak is arranged between the second and third depths.