Abstract:
A computer-implemented method is provided for automatically guiding a first vehicle to maintain a position relative to a second vehicle traveling in a given area. The method includes the steps of: (a) receiving location data on the first and second vehicles; (b) determining a legal travel path in the given area from the first vehicle toward an expected position of the second vehicle; (c) automatically controlling the first vehicle to travel along the legal travel path; and (d) repeating steps (a) through (c) to automatically move the first vehicle to a relative position from the second vehicle and then to automatically maintain the relative position as the first and second vehicles travel through the given area.
Abstract:
Computer-implemented methods and systems are provided for calculating a polygon that estimates the area to be traversed by a moving ground vehicle by merging polygons representing static poses of the vehicle at different times.
Abstract:
A computer-implemented method and system for controlling operation of an autonomous driverless vehicle in response to detection of a hazard in the path of the vehicle.
Abstract:
A computer-implemented method and system for automatically detecting an obstacle from a moving vehicle using a planar sensor mounted on the vehicle.
Abstract:
Computer-implemented methods and systems are disclosed for automatically positioning a moving first vehicle relative to a moving second vehicle traveling in a given area. The method includes the steps of: (a) tracking the second vehicle and guiding the first vehicle to attain a given position relative to the second vehicle; and (b) controlling the first vehicle to maintain a generally constant speed such that an operator of the second vehicle can adjust the speed of the second vehicle to correspondingly adjust a relative position of the second vehicle to the first vehicle in a direction of movement of the first and second vehicles, and controlling the first vehicle to maintain a given distance from the second vehicle in a direction generally perpendicular to the direction of movement of the first and second vehicles by tracking the second vehicle.
Abstract:
A computer-implemented method and system for generating a swath coverage pattern for a given working area to be traversed by a vehicle or equipment attached thereto.
Abstract:
A computer-implemented method is provided for automatically guiding a first vehicle to maintain a position relative to a second vehicle traveling in a given area. The method includes the steps of: (a) receiving location data on the first and second vehicles; (b) determining a legal travel path in the given area from the first vehicle toward an expected position of the second vehicle; (c) automatically controlling the first vehicle to travel along the legal travel path; and (d) repeating steps (a) through (c) to automatically move the first vehicle to a relative position from the second vehicle and then to automatically maintain the relative position as the first and second vehicles travel through the given area.
Abstract:
An assistive vehicular guidance system for locating a spotter vehicle in a target location near a target machine. The guidance system has a positioning system including global positioning sensors on the spotter vehicle and target machine, and user interfaces providing visual and/or auditory cues. An assist module includes long-range and short-range network radios and an analyzer. The analyzer interfaces with the global positioning sensors, the long-range and short-range network radios, and the user interfaces, planning a path for the spotter vehicle and providing cues in guiding the spotter vehicle along the path to the target location. A communications system includes short-range and long-range networks, the short-range network connecting the short-range network radios of the spotter vehicle and the target machine. The long-range network includes a VPN and server, connecting the long-range radios of the spotter vehicle and target machine with the server via the VPN.
Abstract:
An assistive vehicular guidance system for locating a spotter vehicle in a target location near a target machine. The guidance system has a positioning system including global positioning sensors on the spotter vehicle and target machine, and user interfaces providing visual and/or auditory cues. An assist module includes long-range and short-range network radios and an analyzer. The analyzer interfaces with the global positioning sensors, the long-range and short-range network radios, and the user interfaces, planning a path for the spotter vehicle and providing cues in guiding the spotter vehicle along the path to the target location. A communications system includes short-range and long-range networks, the short-range network connecting the short-range network radios of the spotter vehicle and the target machine. The long-range network includes a VPN and server, connecting the long-range radios of the spotter vehicle and target machine with the server via the VPN.
Abstract:
A method of controlling a plurality of robotic vehicles may involve the steps of: Determining a state of each of the plurality of robotic vehicles; assigning a robotic vehicle to an operator in response to a Binding command from the operator; allowing the operator to command the assigned robotic vehicle to perform a mission; and releasing the assigned robotic vehicle in response to an Unbinding command from the operator.