摘要:
Electro-optic elements are becoming commonplace in a number of vehicular and architectural applications. Various electro-optic element configurations provide variable transmittance and or variable reflectance for windows and mirrors. The present invention relates to various thin-film coatings, electro-optic elements and assemblies incorporating these elements.
摘要:
Electro-optic elements are becoming commonplace in a number of vehicular and architectural applications. Various electro-optic element configurations provide variable transmittance and or variable reflectance for windows and mirrors. The present invention relates to various thin-film coatings, electro-optic elements and assemblies incorporating these elements.
摘要:
Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.
摘要:
An electrochromic variable reflectance mirror for a vehicle includes a front element having a rear surface with a first layer of electrically conductive material disposed thereon, and a rear element having a front surface with a second layer of electrically conductive material disposed thereon. An electrical conductor may be provided to electrically couple a portion of the first conductive layer with a portion of the second conductive layer. At least one of the first and second conductive layers may be separated into a first portion and a second portion that is electrically isolated from the first portion and is in electrical contact with an electrochromic material disposed between the elements. A seal is provided to sealably bond the elements together in a spaced-apart relationship. The seal may have at least one electrically conductive region.
摘要:
An electrochromic mirror is disclosed for use in a vehicle rearview mirror assembly having a light source positioned behind the electrochromic mirror for selectively projecting light through the mirror. The electrochromic mirror includes front and rear spaced elements each having front and rear surfaces and being sealably bonded together in a spaced-apart relationship to define a chamber, a layer of transparent conductive material disposed on the rear surface of the front element, at least one solution-phase electrochromic material contained within the chamber, and a second electrode overlying the front surface of the rear element in contact with the electrochromic material. The second electrode includes a layer of reflective material and a coating of electrically conductive material that is at least partially transmissive and is disposed over substantially all of the front surface of the rear element. The second electrode further includes a region in front of the light source that is at least partially transmissive. The electrically conductive coating may include a single transparent layer or a plurality of partially reflective and transmissive layers, or an electrically conductive dichroic coating. The light source may be an information display, such as a compass/temperature display as used in an inside rearview mirror, or may be a signal light as used in an outside rearview mirror.
摘要:
Electro-optic elements are becoming commonplace in a number of vehicular and architectural applications. Various electro-optic element configurations provide variable transmittance and or variable reflectance for windows and mirrors. The present invention relates to various thin-film coatings, electro-optic elements and assemblies incorporating these elements.
摘要:
An electrochromic element comprises a first substrate having a first surface and a second surface opposite the first surface, a second substrate in spaced-apart relationship to the first substrate and having a third surface facing the second surface and a fourth surface opposite the third surface, and an electrochromic medium located between the first and second substrates, wherein the electrochromic medium has a light transmittance that is variable upon application of an electric field thereto. The electrochromic element further comprises a transparent electrode layer covering at least a portion of at least a select one of the first surface, the second surface, the third surface, and the fourth surface, wherein the transparent electrode layer comprises an insulator/metal/insulator stack. The materials utilized to construct the insulator/metal/insulator stack are selected to optimize optical and physical properties of the electrochromic element such as reflectivity, color, electrical switch stability, and environmental durability.
摘要:
According to one embodiment of the present invention, an electrochromic rearview mirror assembly for a vehicle includes an electrochromic mirror having a variable reflectivity, a glare sensor for sensing levels of light directed towards the front element from the rear of the vehicle, an ambient sensor for sensing levels of ambient light, a display positioned behind the partially transmissive, partially reflective portion of the reflector for displaying information therethrough.
摘要:
Electro-optic elements are becoming commonplace in a number of vehicular and architectural applications. Various electro-optic element configurations provide variable transmittance and or variable reflectance for windows and mirrors. The present invention relates to various thin-film coatings, electro-optic elements and assemblies incorporating these elements.
摘要:
The inventive electrochromic mirror may be used in a vehicle rearview mirror assembly having a light source positioned behind the electrochromic mirror for selectively projecting light through the mirror and/or a light sensor positioned behind the electrochromic mirror for selectively receiving light through the mirror. The electrochromic mirror includes front and rear spaced elements each having front and rear surfaces and being sealably bonded together in a spaced-apart relationship to define a chamber, a layer of transparent conductive material disposed on the rear surface of the front element, an electrochromic material is contained within the chamber, and a second electrode overlies the front surface of the rear element in contact with the electrochromic material. The second electrode includes a layer of reflective material and a partially transmissive coating of and is disposed over substantially all of the front surface of the rear element. The second electrode further includes a region in front of the light source and/or light sensor that is at least partially transmissive.