Biosensor and Method
    1.
    发明申请
    Biosensor and Method 审中-公开
    生物传感器和方法

    公开(公告)号:US20080206893A1

    公开(公告)日:2008-08-28

    申请号:US12106523

    申请日:2008-04-21

    IPC分类号: G01N33/544

    摘要: Surface plasmon resonance (SPR) sensor biointerface with a rigid thiol linker layer and/or interaction layer ligand loading with reversible collapse and/or iron oxide nanoparticle sensor response amplification.

    摘要翻译: 具有刚性硫醇接头层和/或相互作用层配体的表面等离子体共振(SPR)传感器生物界面负载有可逆塌陷和/或氧化铁纳米颗粒传感器响应扩增。

    GENERATING HYDROGEN FUEL
    2.
    发明申请
    GENERATING HYDROGEN FUEL 有权
    生成氢燃料

    公开(公告)号:US20110052451A1

    公开(公告)日:2011-03-03

    申请号:US12875648

    申请日:2010-09-03

    申请人: Jerry Elkind

    发明人: Jerry Elkind

    IPC分类号: B01J7/00

    摘要: The present disclosure is directed to generating hydrogen using thermal energy. In some implementations, a method includes concentrating solar energy on an absorption element to heat the absorption element to about 2,000° C. or greater. The absorption element is in thermal contact with a reservoir of water. The water is at a pressure of, for example, approximately 760 Torr or less, and at least a portion of the water disassociates based on heat from the absorption element. The hydrogen and the oxygen are rapidly cooled to substantially avoid recombination. After cooling, the hydrogen gas and oxygen gas are pressurized and then separated using a size-selective membrane.

    摘要翻译: 本公开涉及使用热能产生氢。 在一些实施方案中,一种方法包括将太阳能集中在吸收元件上以将吸收元件加热至约2,000℃或更高。 吸收元件与水储存器热接触。 水的压力例如为约760托或更低,并且至少一部分水基于来自吸收元件的热量而脱离。 氢气和氧气被快速冷却以便基本避免复合。 冷却后,氢气和氧气被加压,然后使用尺寸选择性膜分离。

    Generating hydrogen fuel
    3.
    发明授权
    Generating hydrogen fuel 有权
    产生氢燃料

    公开(公告)号:US08815209B2

    公开(公告)日:2014-08-26

    申请号:US12875648

    申请日:2010-09-03

    申请人: Jerry Elkind

    发明人: Jerry Elkind

    摘要: The present disclosure is directed to generating hydrogen using thermal energy. In some implementations, a method includes concentrating solar energy on an absorption element to heat the absorption element to about 2,000° C. or greater. The absorption element is in thermal contact with a reservoir of water. The water is at a pressure of, for example, approximately 760 Torr or less, and at least a portion of the water disassociates based on heat from the absorption element. The hydrogen and the oxygen are rapidly cooled to substantially avoid recombination. After cooling, the hydrogen gas and oxygen gas are pressurized and then separated using a size-selective membrane.

    摘要翻译: 本公开涉及使用热能产生氢。 在一些实施方案中,一种方法包括将太阳能集中在吸收元件上以将吸收元件加热至约2,000℃或更高。 吸收元件与水储存器热接触。 水的压力例如为约760托或更低,并且至少一部分水基于来自吸收元件的热量而脱离。 氢气和氧气被快速冷却以便基本避免复合。 冷却后,氢气和氧气被加压,然后使用尺寸选择性膜分离。

    Optically based miniaturized sensor with integrated fluidics
    5.
    发明授权
    Optically based miniaturized sensor with integrated fluidics 失效
    具有集成流体学功能的光学小型化传感器

    公开(公告)号:US06183696B2

    公开(公告)日:2001-02-06

    申请号:US09009990

    申请日:1998-01-21

    IPC分类号: G01N2117

    CPC分类号: G01N21/553 G01N21/05

    摘要: A miniaturized sensor (100) that improves the confidence measure of a given sample reading by directing the flow of sample to the sensor/sample interface (117) and thus bringing the sample reliably in contact with the sensor's biosensing film. An inlet flow channel (105) extending from the bottom (125) of the sensor (100) to the sensing surface (120). The inlet channel (105) guides the sample to a cavity 115 formed at a housing surface (120) where it interacts with the film deposit (117). An outlet channel (110) extends from the cavity (115) to the bottom surface (125) and directs the sample outside the device. The light source (58), detector array (68) and interface (54) can be added to the structure providing a fully integrated miniaturized sensor. Various well known methods of manufacturing may be used including mill casting, split molding and double mold processes.

    摘要翻译: 一种小型化传感器(100),其通过将样本流引导到传感器/样品界面(117),从而使样品可靠地与传感器的生物传感膜接触来改善给定样品读数的置信度。 从所述传感器(100)的底部(125)延伸到所述感测表面(120)的入口流动通道(105)。 入口通道(105)将样品引导到形成在其与膜沉积物(117)相互作用的壳体表面(120)处的空腔115。 出口通道(110)从空腔(115)延伸到底表面(125)并将样品引导到设备外部。 可以将光源(58),检测器阵列(68)和接口(54)添加到提供完全集成的小型化传感器的结构中。 可以使用各种众所周知的制造方法,包括轧制,分模和双模工艺。