Abstract:
Provided are a delay locked loop (DLL), which is capable of being adopted at a data processing system and include a duty correction circuit, and a duty correction method at the DLL. The duty correction method includes generating first and second delay clock signals having different phase shifts by delaying an external clock signal by as much as first and second set phases in response to a delay control signal, generating first and second first signals respectively synchronized with the first and second delay clock signals, and generating an output clock signal having a set duty ratio by using the first and second pulse signals. According to the foregoing, a more accurate duty correction operation is performed without a half cycle time delay line or a matching delay line.
Abstract:
A delay locked loop is provided. The delay locked loop controls the number of delay cells that delay the phase of an input clock during a locking operation and controls a phase delay value of at least one delay cell among a plurality of delay cells after the locking operation is completed.
Abstract:
An ultra small-sized SOI MOSFET having a high integration density, low power consumption, but high performances, and a method of fabricating the same are provided. The method includes preparing a SOI substrate on which a monocrystalline silicon layer is formed, forming a first dielectric material layer doped with impurities of a first conductivity type on the SOI substrate, forming an opening to expose the monocrystalline silicon layer etching at least part of the first dielectric material layer, forming a channel region injecting impurities of a second conductivity type into the monocrystalline silicon layer exposed by the opening, forming a source region and a drain region in the monocrystalline silicon layer diffusing the impurities of the first dielectric material layer using heat treatment, forming a gate dielectric layer in the opening on the channel region, forming a gate electrode on the gate dielectric layer to fit in the opening, forming a second dielectric material layer on the entire surface of the SOI substrate on which the gate electrode is formed, forming contact holes to expose the gate electrode, the source region, and the drain region etching part of the second dielectric material layer, and forming metal interconnections to bury the contact holes.
Abstract:
A delay locked loop is provided. The delay locked loop controls the number of delay cells that delay the phase of an input clock during a locking operation and controls a phase delay value of at least one delay cell among a plurality of delay cells after the locking operation is completed.
Abstract:
Provided are a delay locked loop (DLL), which is capable of being adopted at a data processing system and include a duty correction circuit, and a duty correction method at the DLL. The duty correction method includes generating first and second delay clock signals having different phase shifts by delaying an external clock signal by as much as first and second set phases in response to a delay control signal, generating first and second first signals respectively synchronized with the first and second delay clock signals, and generating an output clock signal having a set duty ratio by using the first and second pulse signals. According to the foregoing, a more accurate duty correction operation is performed without a half cycle time delay line or a matching delay line.