Abstract:
One embodiment of the present invention provides a system that reduces computational complexity in simulating an image resulting from an original mask and an optical transmission system. During operation, the system obtains a set transmission cross coefficient (TCC) kernel functions based on the optical transmission system, and obtains a set of transmission functions for a representative pattern which contains features representative of the original mask. The system constructs a new set of kernel functions based on the TCC kernel functions and the transmission functions for the representative pattern, wherein responses to the new kernel functions in a resulting image corresponding to the representative pattern are substantially uncorrelated with one another. The system further produces an intensity distribution of a resulting image corresponding to the original mask based on the new kernel functions, thereby facilitating prediction of a layout that can be produced from the original mask.
Abstract:
One embodiment provides a system for determining an improved process model that models one or more semiconductor manufacturing processes. During operation, the system can receive a first process model. Next, the system can receive a 2-D-pattern detecting kernel which can detect 2-D patterns. The system can then receive a second set of empirical data which is associated with 2-D patterns in a test layout. Next, the system can determine an improved process model using the first process model, the 2-D-pattern detecting kernel, the test layout, and the second set of empirical data.
Abstract:
One embodiment of the present invention provides a system that reduces computational complexity in simulating an image resulting from an original mask and an optical transmission system. During operation, the system obtains a set transmission cross coefficient (TCC) kernel functions based on the optical transmission system, and obtains a set of transmission functions for a representative pattern which contains features representative of the original mask. The system constructs a new set of kernel functions based on the TCC kernel functions and the transmission functions for the representative pattern, wherein responses to the new kernel functions in a resulting image corresponding to the representative pattern are substantially uncorrelated with one another. The system further produces an intensity distribution of a resulting image corresponding to the original mask based on the new kernel functions, thereby facilitating prediction of a layout that can be produced from the original mask.
Abstract:
The present invention provides a compound powder for making magnetic powder cores, a kind of magnetic powder core, and a process for making them. Said compound powder is a mixture composing of powder A and powder B, the content of powder A is 50-96 wt % and the content of powder B is 4-50 wt %, wherein powder A is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder; powder B bears different requirement characteristics from powder A and is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder. Said powder B adopts Fe-based amorphous soft magnetic powder with good insulation property as insulating agent and thus core loss of magnetic powder core decreases. The decrease of magnetic permeability of magnetic powder core resulting from a traditional insulating agent is remedied and the initial magnetic permeability of magnetic powder core is improved by taking advantage of soft magnetic properties of Fe-based amorphous powder.
Abstract:
The present invention provides a compound powder for making magnetic powder cores, a kind of magnetic powder core, and a process for making them. Said compound powder is a mixture composing of powder A and powder B, the content of powder A is 50-96 wt. % and the content of powder B is 4-50 wt. %, wherein powder A is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder; powder B bears different requirement characteristics from powder A and is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder. Said powder B adopts Fe-based amorphous soft magnetic powder with good insulation property as insulating agent and thus core loss of magnetic powder core decreases. The decrease of magnetic permeability of magnetic powder core resulting from a traditional insulating agent is remedied and the initial magnetic permeability of magnetic powder core is improved by taking advantage of soft magnetic properties of Fe-based amorphous powder.
Abstract:
The present invention provides a compound powder for making magnetic powder cores, a kind of magnetic powder core, and a process for making them. Said compound powder is a mixture composing of powder A and powder B, the content of powder A is 50-96 wt. % and the content of powder B is 4-50 wt. %, wherein powder A is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder; powder B bears different requirement characteristics from powder A and is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder. Said powder B adopts Fe-based amorphous soft magnetic powder with good insulation property as insulating agent and thus core loss of magnetic powder core decreases. The decrease of magnetic permeability of magnetic powder core resulting from a traditional insulating agent is remedied and the initial magnetic permeability of magnetic powder core is improved by taking advantage of soft magnetic properties of Fe-based amorphous powder.
Abstract:
One embodiment of the present invention determines the effect of placing an assist feature at a location in a layout. During operation, the system receives a first value which was pre-computed by convolving a model with a layout at an evaluation point, wherein the model models semiconductor manufacturing processes. Next, the system determines a second value by convolving the model with an assist feature, which is assumed to be located at a first location which is in proximity to the evaluation point. The system then determines the effect of placing an assist feature using the first value and the second value. An embodiment of the present invention can be used to determine a substantially optimal location for placing an assist feature in a layout.
Abstract:
One embodiment of the present invention provides a system that determines an assist feature placement within a post-optical proximity correction (post-OPC) mask layout. During operation, the system receives a set of target patterns which represent a set of polygons in a pre-OPC mask layout. The system then constructs a focus-sensitive cost function based on the target patterns, wherein the focus-sensitive cost function represents an amount of movement of post-OPC contours of the target patterns in response to changes in focus condition of the lithography system. Next, the system computes a cost-covariance field (CCF field) based on the focus-sensitive cost function, wherein the CCF field is a two-dimensional (2D) map representing changes to the focus-sensitive cost function due to an addition of a pattern at a given location within the post-OPC mask layout. Finally, the system generates assist features for the post-OPC mask layout based on the CCF field.
Abstract:
One embodiment of the present invention provides a system that determines an assist feature placement within a post-optical proximity correction (post-OPC) mask layout. During operation, the system receives a set of target patterns which represent a set of polygons in a pre-OPC mask layout. The system then constructs a focus-sensitive cost function based on the target patterns, wherein the focus-sensitive cost function represents an amount of movement of post-OPC contours of the target patterns in response to changes in focus condition of the lithography system. Note that the contours of the target patterns substantially coincide with the edges of set of the polygons. Next, the system computes a cost-covariance field (CCF field) based on the focus-sensitive cost function, wherein the CCF field is a two-dimensional (2D) map representing changes to the focus-sensitive cost function due to an addition of a pattern at a given location within the post-OPC mask layout. Finally, the system generates assist features for the post-OPC mask layout based on the CCF field.
Abstract:
One embodiment provides a system that can enable a designer to determine the effects of subsequent processes at design time. During operation, the system may receive a test layout and an optical model that models an optical system, but which does not model the effects of subsequent processes, such as optical proximity correction (OPC). The system may generate a first dataset using the test layout and the optical model. Next, the system may apply OPC to the test layout, and generate a second dataset using the corrected test layout and the optical model. The system may then use the first dataset and the second dataset to adjust the optical model to obtain a second optical model that models the effects of subsequent processes.