摘要:
Provided is a method of manufacturing a see-through-type integrated solar cell and a method of manufacturing the same. The method comprises forming a first conductive material being apart and strip patterned on a transparent substrate so that the first conductive material comprises a predetermined space for enabling light to directly pass through the transparent substrate, forming a solar cell (semiconductor) layer, obliquely depositing a second conductive material and etching the solar cell layer using the second conductive material layer as a mask.
摘要:
Provided are an integrated thin-film solar cell and a method of manufacturing the same. The method comprises forming and patterning a conductive material to be adjacently spaced a predetermined distance apart from each other on a substrate; forming a solar cell (semiconductor) layer on the resultant substrate; obliquely depositing a first transparent conductive material on the solar cell layer; etching the solar cell layer using the first transparent conductive material as a mask; and obliquely depositing a second transparent conductive material on the resultant substrate, and electrically connecting the conductive material with the first transparent conductive material.
摘要:
Disclosed is an element using a piezoelectric characteristic, and in particular, an SAW filter and a method for manufacturing the same. The SAW filter according to the invention is resistant to input wave of high power by employing ta-C or CNT as an acoustic wave transmission medium. The method for manufacturing the SAW filter according to the invention simplified the manufacturing process and reduced a transmission loss as well noise.
摘要:
Provided are an integrated thin-film solar cell and a method of manufacturing the same. The method comprises forming and patterning a conductive material to be adjacently spaced a predetermined distance apart from each other on a substrate; forming a solar cell (semiconductor) layer on the resultant substrate; obliquely depositing a first transparent conductive material on the solar cell layer; etching the solar cell layer using the first transparent conductive material as a mask; and obliquely depositing a second transparent conductive material on the resultant substrate, and electrically connecting the conductive material with the first transparent conductive material.
摘要:
The present invention relates to an AFM(atomic force microscope) cantilever including a field effect transistor(FET) and a method for manufacturing the same; and, more particularly, to a method for manufacturing an AFM cantilever including an FET formed by a photolithography process, wherein an effective channel length of the FET is a nono-scale. Therefore, The present invention can easily implement a simulation for manufacturing the AFM cantilever including he FET by accurately controlling the effective channel length. And also, the present invention can manufacturer the AFM cantilever including the FET having the effective channel ranging several tens to several hundreds nanometers by applying the low price photolithography device, thereby enhancing an accuracy and yield of the manufacturing process and drastically reducing process costs.
摘要:
Disclosed is a method of horizontally growing carbon nanotubes, in which the carbon nanotubes can be selectively grown in a horizontal direction at specific locations of a substrate having catalyst formed thereat, so that the method can be usefully utilized in fabricating nano-devices. The method includes the steps of: (a) forming a predetermined catalyst pattern on a first substrate; (b) forming a vertical growth preventing layer on the first substrate, which prevents carbon nanotubes from growing in a vertical direction; (c) forming apertures through the vertical growth preventing layer and the first substrate to expose the catalyst pattern through the apertures; and (d) synthesizing carbon nanotubes at exposed surfaces of the catalyst pattern in order to grow the carbon nanotubes in the horizontal direction.
摘要:
Provided are an integrated thin-film solar cell and a method of manufacturing the same. The method comprises forming and patterning a conductive material to be adjacently spaced a predetermined distance apart from each other on a substrate; forming a solar cell (semiconductor) layer on the resultant substrate; obliquely depositing a first transparent conductive material on the solar cell layer; etching the solar cell layer using the first transparent conductive material as a mask; and obliquely depositing a second transparent conductive material on the resultant substrate, and electrically connecting the conductive material with the first transparent conductive material.
摘要:
Provided are an integrated thin-film solar cell and a method of manufacturing the same. The method comprises forming and patterning a conductive material to be adjacently spaced a predetermined distance apart from each other on a substrate; forming a solar cell (semiconductor) layer on the resultant substrate; obliquely depositing a first transparent conductive material on the solar cell layer; etching the solar cell layer using the first transparent conductive material as a mask; and obliquely depositing a second transparent conductive material on the resultant substrate, and electrically connecting the conductive material with the first transparent conductive material.
摘要:
Disclosed is an inductor, which employs carbon nanotubes and/or carbon nanofibers synthesized in a shape of coils, so that the inductor has a high inductance even in a minute circuit of a nano-size or a micro-size. The inductor may have a carbon nanotube and/or carbon nanofiber synthesized in a shape of a coil, in which the carbon nanotube and/or carbon nanofiber is synthesized between catalysts fixed at desired locations on
摘要:
Provided are an integrated thin-film solar cell and a method of manufacturing the same. The method comprises forming and patterning a conductive material to be adjacently spaced a predetermined distance apart from each other on a substrate; forming a solar cell (semiconductor) layer on the resultant substrate; obliquely depositing a first transparent conductive material on the solar cell layer; etching the solar cell layer using the first transparent conductive material as a mask; and obliquely depositing a second transparent conductive material on the resultant substrate, and electrically connecting the conductive material with the first transparent conductive material.