Abstract:
The present invention discloses a method for producing polymers in a microscale device. The system utilizes a symmetrically branched system of microchannels interconnecting a plurality of loading decks and re-action chambers. The fluid flow is manipulated by the placement of capillary check valves, mixing areas, and microcomb filters. The system provides for cascading enzymatic biosynthesis pathways wherein any variety of enzymes and reactants can be introduced into the system to produce a final product.
Abstract:
Compositions including a thermosetting polymer network and a mechanophore covalently bonded to the thermosetting polymer network are provided. Substrates including the compositions are provided. In addition, methods of making the compositions and methods of monitoring stress on a substrate comprising the compositions are provided.
Abstract:
Embodiments of the present disclosure provide for analyte sensors, methods for producing and using the analyte sensors, methods of detecting and/or measuring analyte activity, methods for characterizing analyte cellular activity, methods of detecting pH change in a system, method of controlling the concentration of an analyte in a system, fusion proteins, polynucleotides, and vectors corresponding to the analyte sensors, kits, and the like.
Abstract:
Embodiments of the present disclosure provide for analyte sensors, methods for producing and using the analyte sensors, methods of detecting and/or measuring analyte activity, methods for characterizing analyte cellular activity, methods of detecting pH change in a system, method of controlling the concentration of an analyte in a system, fusion proteins, polynucleotides, and vectors corresponding to the analyte sensors, kits, and the like.
Abstract:
Compositions including a thermosetting polymer network and a mechanophore covalently bonded to the thermosetting polymer network are provided. Substrates including the compositions are provided. In addition, methods of making the compositions and methods of monitoring stress on a substrate comprising the compositions are provided.
Abstract:
Compositions including a thermosetting polymer network and a mechanophore covalently bonded to the thermosetting polymer network are provided. Substrates including the compositions are provided. In addition, methods of making the compositions and methods of monitoring stress on a substrate comprising the compositions are provided.
Abstract:
This disclosure relates to an improved electrochemical sensor that has a simplified electrode assembly. The electrode assembly incorporates electrodes into or onto a single polymeric substrate. The working electrode can be porous, to enable an analyte, such as a toxic gas, to access an electrode-electrolyte interface. Ionic connection between electrodes can be made by an electrolyte on a back side of the electrode assembly, and external electronic circuitry can be connected directly to the electrode assembly. This construction dramatically simplifies the sensor, resulting in reduced costs and potentially improved performance. The construction is compatible with batch fabrication methods.
Abstract:
Compositions including a thermosetting polymer network and a mechanophore covalently bonded to the thermosetting polymer network are provided. Substrates including the compositions are provided. In addition, methods of making the compositions and methods of monitoring stress on a substrate comprising the compositions are provided.
Abstract:
Compositions including a thermosetting polymer network and a mechanophore covalently bonded to the thermosetting polymer network are provided. Substrates including the compositions are provided. In addition, methods of making the compositions and methods of monitoring stress on a substrate comprising the compositions are provided.