Abstract:
Filter media, as well as related assemblies, systems and methods. Filter media may contain one or more layers formed of a meltblown material.
Abstract:
Filter media, as well as related assemblies, systems and methods. Filter media may contain one or more layers formed of a meltblown material.
Abstract:
Fine fiber products including fiber webs, as well as related assemblies, systems and methods, are described. In some embodiments, fiber webs described herein may include fine fibers and relatively low amounts of degraded polymer formed during a fiber extrusion process. The fiber webs may be used for filter media applications.
Abstract:
Filter media are described. The filter media may include multiple layers. In some embodiments, the filter media include a nanofiber layer adhered to another layer. In some embodiments, the layer to which the nanofiber layer is adhered is formed of multiple fiber types (e.g., fibers that give rise to structures having different air permeabilities and/or pressure drops). In some embodiments, the nanofiber layer is adhered to a single-phase or a multi-phase layer. In some embodiments, the nanofiber layer is manufactured from a meltblown process. The filter media may be designed to have advantageous properties including, in some cases, a high dust particle capture efficiency and/or a high dust holding capacity.
Abstract:
Filter media, as well as related assemblies, systems and methods. Filter media may contain one or more layers formed of a meltblown material.
Abstract:
Filter media, as well as related assemblies, systems and methods. Filter media may contain one or more layers formed of a meltblown material.
Abstract:
A computer cluster architecture including a plurality of CPUs at each of a plurality of nodes. Each CPU has the property of coherency and includes a primary cache. A local bus at each node couples: all the local caches, a local main memory having physical space assignable as-shared space and non-shared space and a local external coherency unit (ECU). An inter-node communication bus couples all the ECUs. Each ECU includes a monitoring section for monitoring the local and inter-node busses and a coherency section for a) responding to a non-shared cache-line request appearing on the local bus by directing the request to the non-shared space of the local memory and b) responding to a shared cache-line request appearing on the local bus by examining its coherence state to further determine if inter-node action is required to service the request and, if such action is required, transmitting a unique identifier and a coherency command to all the other ECUs. Each unit of information present in the shared space of the local memory is assigned, by the local ECU, a coherency state which may be: exclusive (the local copy of the requested information is unique in the cluster); 2) modified (the local copy has been updated by a CPU in the same node); 3) invalid (a local copy either does not exist or is known to be out-of-date); or 4) shared (the local copy is one of a plurality of current copies present in a plurality of nodes).
Abstract:
Fine fiber products including fiber webs, as well as related assemblies, systems and methods, are described. In some embodiments, fiber webs described herein may include fine fibers and relatively low amounts of degraded polymer formed during a fiber extrusion process. The fiber webs may be used for filter media applications.
Abstract:
Filter media, as well as related assemblies, systems and methods. Filter media may contain one or more layers formed of a meltblown material.
Abstract:
Filter media are described. The filter media may include multiple layers. In some embodiments, the filter media include a nanofiber layer adhered to another layer. In some embodiments, the layer to which the nanofiber layer is adhered is formed of multiple fiber types (e.g., fibers that give rise to structures having different air permeabilities and/or pressure drops). In some embodiments, the nanofiber layer is adhered to a single-phase or a multi-phase layer. In some embodiments, the nanofiber layer is manufactured from a meltblown process. The filter media may be designed to have advantageous properties including, in some cases, a high dust particle capture efficiency and/or a high dust holding capacity.