摘要:
Luminescent semiconductor quantum dots (QDs) conjugated with biomolecules to serve as sensitive probes for early detection of the cancer cells, specifically for ovarian cancer and lung cancer, which represents the most lethal malignancies. The luminescence characterization of the bin-conjugated QDs with cancer specific antigens using linkage molecules. Photo-enhancement is measured at various laser density power, temperatures and laser wavelengths.
摘要:
The invention is drawn to novel gold nanoparticles that are used in a dual optical method for sensitive and selective detection of antigens. The gold nanoparticle aggregates are synthesized from gold hydrochloride and sulfur salts in an aqueous solution. The aggregates can be selectively sized using a spectral notch filter that results in an improved product with versatile uses. The gold nanoparticles can also be used in improved optical communications devices.
摘要:
A method of using a bioactive lysophospholipid (LL) as a biomarker for detecting the presence and recurrence of ovarian cancer. Subspecies of LL, such as lysophosphatidic acid (LPA), lysophosphatidylinositol (LPI), lysophosphatidylcholine (LPC), and lysosphingolipid sphinsosine-1-phosphate (S1P), are used alone or in conjunction to increase the specificity and sensitivity of the assay.
摘要:
The invention is drawn to a method of using nanoparticle aggregates to form sensors and optical filters. Properly sized (60 and 200 nm) nanoparticle aggregates with cores having a sulfur-oxygen molecular species and a shell with a surface in contact with the core are obtained. Those nanoparticle aggregates have a first resonance profile to wavelengths between 350 nm and 1075 nm. A modified resonance profile for those nanoparticle aggregates is determined. The nanoparticle aggregates are then selectively sized by irradiating them with electromagnetic energy at sufficient intensity and spectral content to modify the first resonance profile towards the modified resonance profile. The resulting nanoparticle aggregates can be used as sensors or optical filters at a selected wavelength.
摘要:
A method of detecting a cancer, such as ovarian cancer, in a test subject including (a) determining the amount of a lysophosphatidyl ethanolamine in a sample of a bodily fluid taken from the test subject, and (b) comparing the amount of the lysophosphatidyl ethanolamine in the sample of the bodily fluid taken from the test subject to a range of amounts of the lysophosphatidyl ethanolamine found in samples of the bodily fluid taken from a group of normal subjects of the same species as the test subject and lacking the cancer, such as ovarian cancer, whereby a change in the amount of the lysophosphatidyl ethanolamine in the sample of the bodily fluid from the test subject indicates the presence of the cancer, such as ovarian cancer.
摘要:
The invention is drawn to a method of using nanoparticle aggregates to form sensors and optical filters. Properly sized (60 and 200 nm) nanoparticle aggregates with cores having a sulfur-oxygen molecular species and a shell with a surface in contact with the core are obtained. Those nanoparticle aggregates have a first resonance profile to wavelengths between 350 nm and 1075 nm. A modified resonance profile for those nanoparticle aggregates is determined. The nanoparticle aggregates are then selectively sized by irradiating them with electromagnetic energy at sufficient intensity and spectral content to modify the first resonance profile towards the modified resonance profile. The resulting nanoparticle aggregates can be used as sensors or optical filters at a selected wavelength.
摘要:
The invention is drawn to a method of using nanoparticle aggregates to form sensors and optical filters. Properly sized (60 and 200 nm) nanoparticle aggregates with cores having a sulfur-oxygen molecular species and a shell with a surface in contact with the core are obtained. Those nanoparticle aggregates have a first resonance profile to wavelengths between 350 nm and 1075 nm. A modified resonance profile for those nanoparticle aggregates is determined. The nanoparticle aggregates are then selectively sized by irradiating them with electromagnetic energy at sufficient intensity and spectral content to modify the first resonance profile towards the modified resonance profile. The resulting nanoparticle aggregates can be used as sensors or optical filters at a selected wavelength.
摘要:
A method of detecting a cancer, such as ovarian cancer, in a test subject including (a) determining the amount of a lysophosphatidyl ethanolamine in a sample of a bodily fluid taken from the test subject, and (b) comparing the amount of the lysophosphatidyl ethanolamine in the sample of the bodily fluid taken from the test subject to a range of amounts of the lysophosphatidyl ethanolamine found in samples of the bodily fluid taken from a group of normal subjects of the same species as the test subject and lacking the cancer, such as ovarian cancer, whereby a change in the amount of the lysophosphatidyl ethanolamine in the sample of the bodily fluid from the test subject indicates the presence of the cancer, such as ovarian cancer.
摘要:
A method of detecting a cancer, such as ovarian cancer, in a test subject including (a) determining the amount of a lysophosphatidyl choline in a sample of a bodily fluid taken from the test subject, and (b) comparing the amount of the lysophosphatidyl choline in the sample of the bodily fluid taken from the test subject to a range of amounts of lysophosphatidyl choline found in samples of the bodily fluid taken from a group of normal subjects of the same species as the test subject and lacking the cancer, such as ovarian cancer, whereby a change in the amount of the lysophosphatidyl choline in the sample of the bodily fluid taken from the test subject indicates the presence of the cancer, such as ovarian cancer.
摘要:
Luminescent semiconductor quantum dots (QDs) conjugated with biomolecules to serve as sensitive probes for early detection of the cancer cells, specifically for ovarian cancer and lung cancer, which represents the most lethal malignancies. The luminescence characterization of the bin-conjugated QDs with cancer specific antigens using linkage molecules. Photo-enhancement is measured at various laser density power, temperatures and laser wavelengths.