Abstract:
A change of state of weed seeds to having reduced germination viability in under one minute by illuminating a seed with at least one of 2 J/cm2 cumulative illumination energy, and 0.2 W/cm2 irradiance, but no more than 7 W/cm2 average irradiance, of at least one of an Indigo Region Illumination Distribution (IRID), and infrared radiation that is substantially Medium Wavelength Infrared (MWIR) radiation, preferably 2-8 microns. The MWIR radiation from heated borosilicate glass or glass powder at just under 500 C offered a peak MWIR emission of 3.75 microns was unexpectedly effective, and can be used in a radiant and transmissive weed seed accumulator transport belt. The process can be incorporated into a harvester combine to convert a tailings flow prior to discharge on an agricultural field. An illuminated harvest combine using an illuminator according to the invention allows reduction of the weed seed bank.
Abstract:
A hybrid twin process uses an independent mechanical destructive process and an illumination process to change of state of weed seeds to having reduced germination viability by illuminating a seed with at least one of 2 J/cm2 cumulative illumination energy, and 0.2 W/cm2 irradiance, but no more than 7 W/cm2 average irradiance, of at least one of an Indigo Region Illumination Distribution (IRID), and infrared radiation that is substantially Medium Wavelength Infrared (MWIR) radiation, preferably 2-8 microns. The process can be incorporated into a harvester combine to convert a tailings flow prior to discharge on an agricultural field. For the mechanical destructive process, high required applied energy, noise, wear, and difficulty treating impact-resistant seeds are avoided by modifying a driven load flow via increased capability of exposure to illumination and underdriving the mechanical destructive process. This can include randomization, rarefaction and enhanced circulation.
Abstract:
Rapid pulse programming of a seed, to obtain improved germination probability, and increased root mass, and crop yield, by illuminating the seed with radiation of a wavelength distribution from 300 nm to 20 microns, with a minimum average irradiance of 0.2 Watts/cm2 and a maximum average irradiance of 7 Watts/cm2, and having a narrow specific range of cumulative illumination energy from ½ Joules/cm2 to 3 Joules/cm2 or a higher transition point cumulative illumination energy, so as to specifically engage an irradiance-sensitive and energy-sensitive hidden stimulative exposure response in the seed and so as to avoid illumination of higher cumulative illumination energy that would cause a different and destructive exposure response in the seed. Preferred wavelengths include one or both of Medium Wavelength Infrared (MWIR) radiation and an Indigo Region Illumination Distribution (IRID), which may be applied to an illuminated agricultural planter.
Abstract:
Plant eradication and stressing of plants using illumination signaling where a short-time dual component, low energy, unnatural set of irradiances is applied, with no mutagenic or high radiative energy transfers in any wavelength for eradication by substantial high temperature thermally-induced leaf and plant component failure or incineration. An Indigo Region Illumination Distribution of wavelength 300 nm to 550 nm is directed to plant foliage and/or a plant root crown, while infrared radiation that is substantially Medium Wavelength Infrared radiation of 2-20 microns wavelength, 2.4-8.0 microns preferred, is directed to a plant root crown and/or soil immediately adjacent the root crown. The Indigo Region Illumination Distribution can pass through the MWIR emitter to form a compact illuminator that uses specific unnatural irradiances that provide unexpected plant control. The MWIR emitter can comprise borosilicate glass at 400° F. to 1000° F.
Abstract:
A field image is formed using a tristimulus color model and used to detect target plants or entities on a field. Through the use of a luminance parameter floor, hue and saturation selection steps, feature recognition, a sizing floor and an aspect ratio ceiling, a very fast way is devised to recognize a target plant without need for consulting plant attribute databases, or to analyze spectral or other specialized data for comparison with known attributes. This allows a low calculational processing load and use of simple hardware such as a single board computer to handle machine vision in real time. Treatment steps can include a spray event, a light treatment, and a thermal/mechanical trauma.
Abstract:
Plant eradication using by inflicting upon a plant root (R) unnatural hot wound mechanical and thermal trauma delivered from a hot stab knife (V) which produces a stab gash (K) sufficiently deep to traverse plant cortex (C) and penetrate to plant xylem (X), simultaneous with or followed by heating the damaged area to a temperature of higher than 70 C, preferably 200 C for a sufficient time to cause cellular damage to the plant root. The root and hot stab knife may be shrouded to increase the temperature adjacent the stab gash. Preferably, the stab knife is formed to be sufficiently acuate and flat so as to allow a surface/volume ratio for the stab knife to be at least twice that of a cone of similar size and extent. Unhealable damage results, believed to caused by role conversion of organisms in the rhizosphere from sybiosis to antagonism.
Abstract:
A change of state of weed seeds to having reduced germination viability in under one minute by illuminating a seed with at least one of 2 J/cm2 cumulative illumination energy, and 0.2 W/cm2 irradiance, but no more than 7 W/cm2 average irradiance, of at least one of an Indigo Region Illumination Distribution (IRID), and infrared radiation that is substantially Medium Wavelength Infrared (MWIR) radiation, preferably 2-8 microns. The MWIR radiation from heated borosilicate glass or glass powder at just under 500 C offered a peak MWIR emission of 3.75 microns was unexpectedly effective, and can be used in a radiant and transmissive weed seed accumulator transport belt. The process can be incorporated into a harvester combine to convert a tailings flow prior to discharge on an agricultural field. An illuminated harvest combine using an illuminator according to the invention allows reduction of the weed seed bank.
Abstract:
A hybrid twin process uses an independent mechanical destructive process and an illumination process to change of state of weed seeds to having reduced germination viability by illuminating a seed with at least one of 2 J/cm2 cumulative illumination energy, and 0.2 W/cm2 irradiance, but no more than 7 W/cm2 average irradiance, of at least one of an Indigo Region Illumination Distribution (IRID), and infrared radiation that is substantially Medium Wavelength Infrared (MWIR) radiation, preferably 2-8 microns. The process can be incorporated into a harvester combine to convert a tailings flow prior to discharge on an agricultural field. For the mechanical destructive process, high required applied energy, noise, wear, and difficulty treating impact-resistant seeds are avoided by modifying a driven load flow via increased capability of exposure to illumination and underdriving the mechanical destructive process. This can include randomization, rarefaction and enhanced circulation.
Abstract:
Plant eradication and stressing of plants using illumination signaling where a short-time dual component, low energy, unnatural set of irradiances is applied, with no mutagenic or high radiative energy transfers in any wavelength for eradication by substantial high temperature thermally-induced leaf and plant component failure or incineration. An Indigo Region Illumination Distribution of wavelength 300 nm to 550 nm is directed to plant foliage and/or a plant root crown, while infrared radiation that is substantially Medium Wavelength Infrared radiation of 2-20 microns wavelength, 2.4-8.0 microns preferred, is directed to a plant root crown and/or soil immediately adjacent the root crown. The Indigo Region Illumination Distribution can pass through the MWIR emitter to form a compact illuminator that uses specific unnatural irradiances that provide unexpected plant control. The MWIR emitter can comprise borosilicate glass at 400° F. to 1000° F.
Abstract:
Field-deployable spatial positioning or measurement systems are provided for improved versatility, reliability and performance. The spatial positioning or measurement systems use rotating laser fans or beams for positioning and measuring and include a system integrated field-deployable length standard that uses a reelable tape with positional indents. The systems further include the use of labyrinth seals at interface volumes between rotating laser heads and transmitter assemblies to prevent ingress of contaminants and allow for elimination of the use of rotary seals. Further, new dynamic leveling techniques are provided to plumb positional laser transmitter systems. Still further, strobe beam configurations are provided for improved near/far performance and a vertical mode sensing scheme that allows switching to measuring tall structures when needed.