Abstract:
Methods and systems for PMD compensation in an optical communication system are implemented by transmitting multiple optical signals through a common optical conduit to an optical compensator that adjustably rotates the polarization states of the multiple optical signals and transmits the rotated optical signals to an optical receiver. The receiver, upon sensing an excessive error condition, commands the optical compensator to change the polarization state of rotation, which changes the PMD profile of the received optical signals.
Abstract:
Methods and systems for PMD compensation in an optical communication system are implemented by transmitting multiple optical signals through a common optical conduit to an optical compensator that adjustably rotates the polarization states of the multiple optical signals and transmits the rotated optical signals to an optical receiver. The receiver, upon sensing an excessive error condition, commands the optical compensator to change the polarization state of rotation, which changes the PMD profile of the received optical signals.
Abstract:
A method for entering a market with high barriers to entry and a plurality of proprietary business elements includes converting at least one of the business elements into a universal business element that can accept a wide variety of inputs from other business elements, while converting a remaining one of the plurality of business elements to commoditized business elements. In addition, a market of a resulting business is limited so that the resulting business straddles a gap between two subdivisions of the market. Thus, a combination of technology and market division enables conversion of otherwise proprietary system to commodity equipment that can work with a wide variety of existing vendor equipment while competing technologically with highly engineered solutions. For example as applied to the undersea telecommunications market, one exemplary embodiment of the present invention employs an optical repeater that can accept any existing submarine cable, in combination with an optical line interface terminal that can accept existing terrestrial terminal equipment. Regarding market division, this embodiment is specifically limited to spans of less than 5000 kilometers, and preferably between 350 and 4000 kilometers, thereby straddling both the long-haul and short-haul markets while providing highly desirable services and capability. By selecting this market segment, the embodiment achieves highly desirable economics without the usual concomitant high engineering costs.
Abstract:
Methods and systems for PMD compensation in an optical communication system are implemented by transmitting multiple optical signals through a common optical conduit to an optical compensator that adjustably rotates the polarization states of the multiple optical signals and transmits the rotated optical signals to an optical receiver. The receiver, upon sensing an excessive error condition, commands the optical compensator to change the polarization state of rotation, which changes the PMD profile of the received optical signals.
Abstract:
Methods and systems for higher-order PMD compensation are implemented by developing an effective mathematical model and applying economical design techniques to the model. By assuming a constant precession rate for a narrow band of frequencies in an optical signal, a simplified model of a higher-order PMD compensator can be derived. The model can be used produce an economical compensator by making multiple uses of selected optical components.
Abstract:
A system and method for controlling gain shape in a Raman amplifier including a plurality of pumps. The pumps produce a spectral distribution of output power characteristic. A feedback control system provides one or more feedback control signals in response to the amplifier output for adjusting pump parameters to achieve a desired spectral distribution of output power characteristic.
Abstract:
A method and apparatus is provided for obtaining status information from a given location along an optical transmission path. The method begins by generating a cw probe signal having a prescribed frequency that is swept over a prescribed frequency range. The cw probe signal is transmitted over the optical path and a returned COTDR signal in which status information concerning the optical path is embodied is received over the optical path. A receiving frequency within the prescribed frequency range of the returned COTDR signal is detected to obtain the status information. The detecting step includes the step of sweeping the receiving frequency at a rate equal to that of the prescribed frequency. A period associated with the receiving frequency is temporally offset from a period associated with the prescribed frequency.
Abstract:
A method and apparatus is provided for using optical time-domain reflectometry (OTDR) with a WDM transmission system that includes a plurality of terminals interconnected by at least two pairs of unidirectional optical transmission paths each of which has at least one repeater therein. The method begins by transmitting an optical probe signal from a first OTDR unit associated with a first terminal into the repeater over a first optical path in a first of the at least two pairs of unidirectional optical transmission paths. The first OTDR unit receives a first returned OTDR signal over a second optical path in the first optical path pair. The first OTDR signal contains status information concerning the first optical path in the first optical path pair. The optical probe signal from the first optical path in the first optical path pair is coupled to a second optical path in the second optical path pair. The first optical path in the first optical path pair supports optical signals traveling in a direction opposite to optical signals supported by the second optical path in the second optical path pair. A second returned OTDR signal is received over a first optical path in the second optical path pair in which status information concerning the second optical path in the second optical path pair is embodied. The second returned OTDR signal traverses a repeater located in the second optical path pair. The second returned OTDR signal is coupled from the first optical path in the second optical path pair to the second optical path in the first optical path pair so that the second OTDR signal is returned to the first OTDR unit. The first optical path in the second optical path pair supports optical signals traveling in a direction opposite to optical signals supported by the second optical path in the first optical path pair.
Abstract:
An optical amplifier achieves multistage amplification with a four port optical circulator with fiber amplifiers and Faraday rotators and mirrors connected to at least two of the ports. The fiber amplifiers permit the signal to pass through the fiber amplifiers twice.
Abstract:
High output power, high gain, and low noise are achieved in a two-stage optical amplifier, suitable for use as a repeater for a long haul lightwave communication system, in accordance with the principles of the invention, by employing a first amplifying stage having a signal gain sufficiently small to prevent self-saturation by amplified stimulated emission (ASE) that uses counter-propagating pump light to cause maximum inversion of the first stage amplifying medium. In an illustrative embodiment of the invention, EDFAs are used in each of two amplifying stages. The length of the EDFA in the first stage is short enough to ensure nearly complete inversion of the EDFA from pump light that counter-propagates with the signal. The counter-propagating pump light allows the invention to advantageously avoid the significant noise figure penalty from the input loss associated with co-propagating pump light. And, noise figure is improved because complete inversion is achieved throughout the EDFA, and, at the input where the noise figure is most sensitive to inversion. The short length also eliminates self-saturation of the EDFA from ASE which degrades the noise figure. However, the length, and hence the gain, of the EDFA in the first stage is long enough to provide sufficient gain so that the noise figure of the two-stage amplifier, as a whole, is determined primarily by that of the first stage. A second EDFA in the second stage of the amplifier may then be configured using co-propagating or counter-propagating pump light for additional signal amplification to provide the required output power and gain for long haul lightwave systems. Other aspects of illustrative embodiments of the invention include the use of passive optical elements including filters, isolators, and attenuators.