摘要:
The present invention relates to a power factor correction circuit and a method of driving the power factor correction circuit. The power factor correction circuit according to the present invention includes a power transfer element configured to receive an input voltage, an input current corresponding to the input voltage flowing through the power transfer element, and a switch connected to the power transfer element and configured to control an output voltage generated by the current flowing through the power transfer element. The power factor correction circuit is configured to detect a zero voltage edge timing of the input voltage by detecting the input voltage, generate a reference clock signal having a frequency that varies according to the detected edge timing, generate a reference signal using the reference clock signal, generate an error amplification signal based on a difference between the output voltage and a predetermined error reference signal, generate the amplification reference signal by multiplying the reference signal by the error amplification signal, and control a switching operation of the switch using the amplification reference signal and a detection signal corresponding to a current flowing through the switch.
摘要:
In one embodiment, a power integrated circuit device is provided. The power integrated circuit device includes a high-side power switch having a high voltage transistor and a low voltage transistor. The high voltage transistor has a gate, a source, and a drain, and is capable of withstanding a high voltage applied to its drain. The low voltage transistor has a gate, a source, and a drain, wherein the drain of the low voltage transistor is connected to the source of the high voltage transistor and the source of the low voltage transistor is connected to the gate of the high voltage transistor, and wherein a control signal is applied to the gate of the low voltage transistor from the power integrated circuit device. The high-side power switch is turned on when a predetermined voltage is applied to the source of the low voltage transistor, a voltage higher than the predetermined voltage is applied to the drain of the high voltage transistor, and a voltage level of the control signal becomes higher than the predetermined voltage by a threshold voltage of the low voltage transistor.
摘要:
Disclosed are a switch controller, a switch control method, and a converter based thereon. The switch controller generates an input sensing voltage corresponding to the input voltage of the converter, and compares the input sensing voltage with a predetermined first reference value. The switch controller generates a zero cross detection signal with a first level or a second level depending upon the comparison result, and generates a reference clock signal varying in frequency in accordance with one cycle of the zero cross detection signal. The switch controller generates digital signals by using the reference clock signal and the zero cross detection signal. The digital signals synchronize with the zero cross detection signal, and increase in accordance with the reference clock signal during a half of one cycle of the zero cross detection signal, while decreasing in accordance with the reference clock signal during the other half cycle of the zero cross detection signal. The switch controller generates a reference signal with a voltage level corresponding to the digital signal.
摘要:
In one embodiment, a power switch driving circuit is provided for a fluorescent lamp ballast. The circuit includes a first power switch driven by a first driver. A controller has a first output terminal for outputting a control signal for controlling the first driver. The first driver includes a first capacitor having a first terminal electrically connected to a control electrode of the first power switch and a second terminal electrically connected to the first output terminal.
摘要:
A temperature-independent current source is provided, which includes a current source generating a current that is proportional to the temperature and a current source generating a current that is inversely proportional to the temperature. Values of the circuit elements are selected so that the currents of the current sources add up to a substantially temperature-independent current. Related current sources utilize dual-base Darlington bipolar transistors to generate a temperature-independent current.
摘要:
A high voltage gate driver circuit according to an embodiment of the present invention controls an operational range of an output signal of a level shifter to be appropriate for an operational range of a reshaper through a VIV converter. Even though the voltage range of the signal which is input from the high voltage gate driver circuit to the level shifter is different from the operational range of the reshaper, the input signal can always be recognized exactly regardless of the VTH voltage of the reshaper by controlling the operational range of the signal through the VIV converter. In addition, incorrect operation of the circuit can be prevented by erasing a common mode noise which is input with the input signal.
摘要:
An isolated flyback converter for an LED driver includes a snubber circuit unit connected to the primary side of a transformer; and a snubber voltage detection unit which detects a snubber voltage of the snubber circuit unit and generates a reference voltage proportional to the detected snubber voltage. Further, the isolated flyback converter includes a switching unit with a source terminal and a drain terminal, and may be turned on or off in response to an arbitrary logic signal. Furthermore, the isolated flyback converter includes a control unit which compares a voltage supplied through the switching current sensing resistor with the reference voltage, and supplies a logic signal at relatively high level or relatively low level to the switching unit to control the switching unit such that a secondary-side current of the transformer is maintained relatively constant.
摘要:
The present invention relates to a power factor correction circuit and a method of driving the power factor correction circuit. The power factor correction circuit according to the present invention includes a power transfer element configured to receive an input voltage, an input current corresponding to the input voltage flowing through the power transfer element, and a switch connected to the power transfer element and configured to control an output voltage generated by the current flowing through the power transfer element. The power factor correction circuit is configured to detect a zero voltage edge timing of the input voltage by detecting the input voltage, generate a reference clock signal having a frequency that varies according to the detected edge timing, generate a reference signal using the reference clock signal, generate an error amplification signal based on a difference between the output voltage and a predetermined error reference signal, generate the amplification reference signal by multiplying the reference signal by the error amplification signal, and control a switching operation of the switch using the amplification reference signal and a detection signal corresponding to a current flowing through the switch.
摘要:
A resonant inverter includes a first driver and a second driver for driving a first and second switching devices, respectively, a dead time generator for generating a first drive signal and a second drive signal respectively, a current-controlled oscillator for supplying, to the dead time generator, an output clock having a frequency determined based on a first current input to the current-controlled oscillator, and a current mirror for supplying the first current to the current-controlled oscillator in an amount proportional to a second current flowing through an external resistor. The current mirror includes a track/hold circuit, to supply the second current in an amount equal to an amount of the second current supplied before a variation in the amount of the second current, during a transition of an output signal between the first and second switching devices.
摘要:
A ballast integrated circuit (IC) for driving a first switching element and a second switching element includes: a variable gain amplifier (VGA) connected to a first input terminal connected to a resistor, for generating an output current signal according to a resistance value of the resistor and a gain control signal; a preheating/ignition controller connected to a second input terminal connected to a capacitor, for generating an output current signal and an output voltage signal acting as the gain control signal according to a voltage of the second input terminal; an active zero-voltage controller for generating a hard-switching current signal and an active zero-voltage switching current signal, such that it adjusts the voltage of the second input terminal according to switching states of the first switching element and the second switching element; an oscillator for generating an oscillation signal upon receiving the output current signal from the variable gain amplifier (VGA); and a dead-time controller for receiving the voltage signal of the second input terminal and an output signal of the oscillator, adjusting a dead time using the received signals, and at the same time generating driving signals of the first and second switching elements.